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◮ Avoid it. Borrow code. Find partners. Use Matlab.

◮ Become a guru/sysadmin. Help others publish first.

◮ Concentrate on numerics. Fortran. One program per dataset.

◮ Build a personal library. Generalize your code for reuse.
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Learn fundamentals deliberately, not as you go

◮ Take a course, read books
◮ Data structures, algorithms, object-oriented, functional

◮ Learn as a branch of math, not engineering.
◮ Concentrate on reusable abstractions, not popular toolkits.
◮ Master simplicity, not complexity.

◮ Do not get carried away.



Learn best software practices

◮ Show and share

◮ Source control

◮ Tests

◮ Small changes (refactoring)

◮ Appropriate generalization



Examples of generalization/abstraction

◮ Seismic data objects with flexible dimensions

◮ Separate velocity models from ray tracers

◮ Different imaging conditions with different extrapolators



Typical geophysical inversions

◮ Data simulated by series of non-linear operations

◮ Inversion is both over- and under-determined

◮ No model parameters fit data perfectly

◮ Many models fit data equally well

◮ Non-linearity is well-behaved



Sensitivity of interval velocity to RMS errors



Dix inversion

◮ Forward equation cannot fit arbitrary data:
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◮ Explicit inverse may not be physical:
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◮ Instead minimize damped least-squares:
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Damp interval velocity roughness



Defining an inversion

◮ Do not define your solution by the way you solve it.

◮ Want to improve the solution without redefining the problem.

◮ Instead, identify an objective function (or probabilities).
E.g., define rays by minimum time.



Lomask’s flattening, redone

◮ Estimate vertical stretch that flattens reflections.

◮ Original: Custom regression, phase-unwrapping

◮ New version: A few hundred lines of code specific to inversion

◮ JTK reused: structure tensors, Gaussian filters, Gauss-Newton



Local dips from structure tensors



Estimated vertical shifts in color



Flattened with vertical shifts



The problem, the data, and the solution

Flatten seismic structure with vertical shift τ(x , y , t):

flat(x , y , t) = structure[x , y , t + τ(x , y , t)].

Data are slopes px , py measured from structure tensors.

Want ∂
∂x
τ(x , y , t) ≈ px(x , y , t)

and ∂
∂y
τ(x , y , t) ≈ py (x , y , t).

min
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Looks like damped least-squares

The best model m fits the data d with a function f(d) by
minimizing the vector norms

‖d− f(m)‖2d + ‖m‖2m

or [d− f(m)]∗ C
˜

−1
d [d− f(m)] + m∗C

˜

−1
m m.

Optional covariances:

C
˜
d ≡ E (d d∗) and C

˜
m ≡ E (mm∗).



Gauss-Newton inversion

◮ Finds m to minimize

[d− f(m)]∗C
˜

−1
d [d− f(m)] + [m−m0]

∗C
˜

−1
m [m−m0]

◮ Algorithm:

1. Accepts starting model m0

2. Approximates f(m0 +∆m) ≈ f(m0) + F
˜
·∆m

3. Conjugate-gradients minimizes quadratic for ∆m
4. Line search scales perturbation: m0 + α∆m
5. Adds perturbation to reference model for new m0

6. Returns to step 2



Required operations

◮ Simulate data from model:
d = f(m)

◮ Perturb data with model perturbation:
∆d = F

˜
(m0) ·∆m ≈ f(m0 +∆m)− f(m0)

◮ Perturb model with transpose:
F
˜
(m0)

∗ ·∆d



What is that transpose?

Use definition: d∗(F
˜
m) ≡ (F

˜

∗d)∗m

◮ Discrete: swap summations

◮ Continuous: integrate by parts

Examples:

◮ Smoothing → Smoothing

◮ Convolution → Correlation

◮ Derivative → Negative derivative

◮ Plane-wave modeling → Slant stacks

◮ Seismic modeling → Migration



Inversion sees three abstract operations

Vector data = forward(Vector model)

Vector data = linearized(Vector model, Vector refModel)

Vector model = transpose(Vector data, Vector refModel)



Required operations for both data and model

Vector {

scale(float scalar) [required]

add(Vector other)

dot(Vector other)

multiplyInverseCovariance() [optional]

applyHardConstraint()

}



Constrained Dix inversion

◮ Solve for smooth interval slowness m.

◮ Minimize errors in squared stacking slowness d

◮ Forward transform:

1/dj = (1/j)
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◮ Linearized transform:
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◮ Transpose transform:

∆mk = (1/m3
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Other applications

◮ Tomography: reflection, cross-well, diving, amplitude

◮ Generalized Radon transforms

◮ Surface-consistent deconvolution

◮ Normal moveout corrections

◮ Automatic moveout picking

◮ Coherency, wavelet/phase attributes

◮ Tests for simulations



Conclusions

◮ More time on “computer science” quickly saves time

◮ Look for opportunities to generalize





Alternative to covariance

◮ Insert simplification filter d = f(S
˜
·m)

where S
˜

∗C
˜

−1
m S

˜
≈ I
˜

◮ If C
˜

−1
m ·m roughens, then S

˜
·m smooths.

◮ Faster than covariance constraint

◮ Can change dynamically during optimization


