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ABSTRACT

A non-unique inversion of reflection seismic data can be most easily interpreted if
1t describes the most important reflections with the fewest physical parameters at
unexpected values. Signal should be easily modeled by independent parameters, but
noise should lack the spatial coherence (statistical dependence between samples) of sig-
nal. A parameter should be perturbed from its simplest value only if this perturbation
cannot be easily explained by incoherent noise in the data. Similarly, estimated noise

should not be easily explained by the equations that model signal.

Statistical tools are illustrated by an improvement of the ‘“normal-moveout,”
hyperbolic stack of seismic field gathers. 1 first find least-squares perturbations of
parameters that model independent hyperbolic reflections, the signal. To overestimate
the contribution of noise to the inverted model, I invert completely incoherent data
and compare amplitude histograms of the two models. Using information theory, I
estimate probability density functions for signal and noise in the model perturbations
and keep perturbations that contain mostly signal with high probability. Reliable
parameters resolve hyperbolic curvatures and velocity information better than the ori-

ginal hyperbolic stack.

I extract from shot gathers those reflections that are easily described as sums of
hyperbola segments of all curvatures. Similarly, ground roll and other recorded noise

are extracted as those events likely to contain a small amount of residual hyperbolas.

Next, strategies for choosing models are discussed. For example, after migration

(extrapolation of wavefields to image sources), diffracted reflections are described by
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independent samples. A sum of dipping line segments that are wider than the Fresnel
zone models only undiffracted bed reflections. I extract diffractions and estimate

seismic velocities from the survey of a growth fault.

Lastly, using the acoustic wave-equation, I model reflections in a recorded vertical
seismic profile. To encourage a locally homogeneous impedance function, I treat
derivatives of rock impedance with depth as independent parameters. Unreliable non-
zero derivatives are replaced by zeros. I also invert for the seismic source and recep-
tivity of geophones and extract tube-wave noise. Reliably perturbed impedances model
the data equally well as more complicated functions from conventional gradient optimi-

zatlons.
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Introduction

Many discussions of seismic inversion begin with the choice of a particular earth
property and end with the conclusion that seismic data tell something, but not enough,
about this property. Much valuable discussion is often presented as a technical aside:
how do we attach numbers to earth properties without pretending to have more infor-
mation than the data have given? How do we avoid misinterpreting irrelevant infor-
mation? These two questions are discussed here as the business of signal/noise separa-

tion.

A number of authors have answered the difficulties of incomplete inversion by
fundamentally redefining the goals: Lanczos, Backus and Gilbert, Claerbout and Muir,
Wiggins, Gray, Godfrey, Rocca, and Thorson. Their inversions encourage models that
are simplest to interpret, but that are complicated enough to explain the most impor-
tant data. Partially inverted parameters prove to be useful so long as they do not

mislead.

Clayton (1981) pointed out that early inversion methods could be described as
“model fitting.” Synthetic seismic data are computed first and compared to recorded
data. Model parameters are then selectively perturbed to fit the data better, either
with an interpreter’s guesses, or by some simplification and partial solution of the
modeling equations. Such a strategy places all emphasis on fitting the data, and none
on the simplicity of the inverted model. The interpreter is responsible for encouraging
simple perturbations, but he can only guess at their effects on the data. Though the
number and complexity of perturbations is usually low, so is the accuracy of the syn-

thetic data. Two interpreters can obtain very different results.

Lanczos (1961) noted that linear modeling equations preserve linear components of
the model unequally and developed an algorithm to invert the best preserved com-
ponents first. Some components are destroyed entirely and become part of a “null

space”’; these components have no effect at all on the data. Some linear components,



composed of eigenvectors with small eigenvalues, are suppressed by transformation
below the level of noise in the data. Lanczos constructed a decomposition (singular-
value) that inverts a matrix first for eigenvectors with large eigenvalues. Unfor-
tunately, eigenvectors rarely represent simple physical structures. The appearance of
eigenvectors can change completely for different recording geometries, sampling, and

parametrization.

The Lanczos algorithm, once its effect was understood, was reformulated in
several equivalent ways. Damped least-squares inversion, one of the simplest, is dis-
cussed in any recent survey of linear inverse methods (see Menke, 1984). I shall discuss
this method at length in Chapter 1. The inverted model should minimize an objective
function equal to the sum of the Cartesian (L ?) norms of the uninverted data and

model. The best model inverts only the strongest eigenvectors.

Backus and Gilbert (1968) emphasized the resolution of detail in the model
parameters. If possible, information from one parameter should not affect the inverted
values for other parameters. They proposed a function called “deltaness” that meas-
ures the blurring of isolated details after forward and inverse transformation. The pro-
duct of matrices for inverse and forward transformation should be close as possible to a
diagonal matrix. For overdetermined inversions, one can exchange accuracy in fitting
the data for more resolution. Because their solution does not depend on the data, one
can distinguish the resolving power of the inversion from statistical dependence

between the parameters being inverted.

If the data have resulted from independent, non-Gaussian parameters, then details
of the inverted model should always be isolated, sparse, “spiky,” and ‘“parsimonious.”
Claerbout and Muir (1973), Wiggins (1978), and Gray (1979) introduced various func-
tions that measure the simplicity of inverted model parameters directly, chiefly for the
deconvolution of seismograms. Whereas previous methods depended only on the
modeling equations, these inverses examined the data to improve further the sparseness
of the result. Inversions could be modified to encourage more or less simplification of

the parameters.

Thorson (1984) showed that some very common geophysical processes could be
redefined and improved as inversions—particularly the stacking of surface seismic data
and the extrapolation and interpolation of surface and VSP data. He showed that an
improved resolution in the model was essential to improving these processes. Thorson
used a data-dependent algorithm that, like Backus and Gilbert, could balance the accu-

racy of fitting the data with the resolution of the inversion.



Most of the preceding algorithms can be derived and justified as statistical estima-
tion problems. Each makes different, though flexible, assumptions about the statistical
properties of the inverted model and noise. Godfrey (1979) and Rocca (with Godfrey,
1979, and Harlan, Claerbout, and Rocca, 1983) suggested that constraints on the model
be constructed in statistical form, in terms of general probability functions. Statistical
information can then be merged from outside sources or from an examination of the
data. Such information can determine how much simplicity is statistically reliable for
the model.

This thesis presents such an statistical estimation procedure, called signal/noise
separation, for choosing simple perturbations of model parameters. I shall use a two-
step method, as suggested by Clayton (1981). The first step will concentrate on
transforming the data into the domain of the model parameters, so that the data can
be reconstructed as well as possible. I shall begin with a simple and stable linear

inverse, such as the damped least-squares inverse.

The second step will examine the perturbed model and keep those details (signal)
that seem most consistent with the modeling equations. I must introduce some addi-

tional statistical tools, but their goals can be stated simply.

] Keep parameter perturbations that can be interpreted independently, that do not

obscure each other.

° Keep perturbations that are unlikely to have resulted from the transformation of

useless information—noise or misinterpreted signal.

The first goal can be satisfied by a correct choice of modeling equations, so that each
model parameter represents a fundamental, independent physical detail. For instance,
seismic midpoint gathers can be described simply if each point of the model
corresponds to a single hyperbolic reflection. Such a model must treat all non-
hyperbolic features as noise. The most efficient and most interpretable inversion

should perturb the fewest independent parameters.

Let “signal” be those features of the data that are easily described by indepen-
dent model details, and “noise” as components that are not. The ability of the model
to describe an event depends on the event’s statistical predictability—its ‘“coherence.”
Coherence is the shape of an event in the data, the visible dependence between amplh-
tudes in different samples. The characteristic coherence of signal can be easily created

by the modeling equations; that of the noise cannot.

A least-squares inversion affects signal and noise differently: the coherence of sig-

nal simplifies, noise becomes more coherent. By examining distributions of amplitudes



_4-

before and after transformation, one can estimate, with a known reliability, the contri-
bution of noise to every least-squares perturbation. Perturbations should be kept as a
reliable estimate of signal if they are unlikely to have resulted from the transformation

of noise.

The three chapters of this thesis examine three applications of increasing complex-
ity. Chapter 1 begins with the familiar hyperbolic model of the normal moveout
(NMO) stack. The NMO stack is familiar as perhaps the most common single process
applied to reflection seismic data; yet, its shortcomings are widely lamented.
Reflections are grossly oversimplified: much valuable information is destroyed, and

much non-hyperbolic noise is interpreted as if it were hyperbolic.

The first section of Chapter 1 reviews the posing and solution of least-squares
inversion for a process that is not often thought of as an inversion. As did Thorson
(1984), I first present a linear inverse as an alternative to the NMO stack. I use the
example to present damped least-squares inverses in a form that can be applied directly
to later, more complicated examples. This first step improves considerably the quality

of the data that can be reconstructed from the stack.

Next, statistical methods are introduced to eliminate from the hyperbolic model
those details that could have resulted from the random alignment of noise or misinter-
preted signal. The same methods are applied later to a more complicated hyperbolic
model that allows coherence to change laterally. Finally, the same statistical tools are
used to extract ground roll and other noise—features that are not easily explained as a

superposition of hyperbolic events in the data.

Chapter 2 emphasizes the crucial choice of models for the coherence of signal and
noise. The best model for signal should maximize the independence of model parame-
ters. I find that extrapolation of wavefields back in time tends to simplify the spatial
coherence of signal, while dispersing and adding coherence to noise. This simplification
of signal increases the independence of samples as well as their non-Gaussianity. To
recognize the best model of signal, one can measure the non-Gaussianity of the inverted

parameters from amplitude histograms.

Zero-offset (or stacked) data prove to have two varieties of coherent signal:
diffracted reflections that contain velocity information, and non-diffracted reflections
that do not. Non-diffracted reflections are easily described by the superposition of dip-
ping lines that are wider that the Fresnel zone of reflected diffractions. Diffractions are

H

easily described by the least-squares inverse of “migration,” which extrapolates the

image sources of reflections. KEdge diffractions and seismic velocities are successfully



extracted from reflections of a growth fault.

Chapter 3 generalizes the methods of the previous chapters for a non-linear
model, to invert acoustic impedances from vertical seismic profiles. Signal extraction
gives the impedance function the fewest structural complications necessary to explain
the data. Derivatives of impedance with depth are used as independent model parame-
ters. Unless the data give a strong probability to the contrary, the inverted impedance
function is kept as homogeneous as possible. Noise extractions remove useless, obscur-

ing events such as tube waves.

These chapters discuss a single method of inversion in three different contexts.
The first chapter explains the algorithm with a simple and familiar seismic model. The
second explores tools for the definition of new and flexible models of recorded
wavefields. The third examines a difficult, non-linear modeling equation and shows

how its inversion can use the simple tools developed in the earlier chapters.



