APPENDIX F
FREQUENCY-DOMAIN MIGRATION

For convenience I briefly derive the dispersion relations used for migration in this
paper. Constant velocity formulations will suffice for the applications of Chapter 2;
least-squares superpositions can be spatially variable. Stream-lined Stolt (f-k) or Gaz-
dag (phase shift) algorithms are the most eflicient for multiple constant-velocity migra-

tions.

Let us begin in every case with the double-square root equation (DSR). Assume
data are recorded as a function of (s,g,t), which have the Fourier duals (k, kg W), s
is the horizontal coordinate of the shot, g of the geophone; ¢ is the arrival time. z is

the depth of an imaged reflector, and k, its dual.
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See Claerbout (1984) for a derivation and justification of this relation. In short, a sin-
gle square root derives from the scalar wave equation: w? = k,2 + k,? reciprocity
allows shots to be downward continued just as geophones. No one uses this relation
directly. Nevertheless, in theory one could migrate by mapping the data from
(ks .k, ,w) to (k, k, ,k,) and imaging at (s =g ,z). Ottolini, 1982 provides some insight-

ful use of this relation in various coordinate systems.

Often, midpoint-offset coordinates are more convenient: y=(g+s)/2,
h=(g-s)/2.

k, z%[\/l—(Y+H)2+\/1—(Y—H)2] (F.2)

vky

’Ukh
where ¥ = H =
2w

2w

A stacked section is a sum of constant offset sections stretched (by normal
moveout and perhaps dip moveout) to resemble the zero offset. The data then are a
function of (y,t) and supposedly invariant over h, thus k, =0. Migration requires

mapping from (k, w) to (k, ,k,) with
k, =22 V1-v?. (F.3)
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Stolt and Gazdag give two widely used algorithms for this mapping, the commonest
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migration. Stolt’s is fastest, but a Gazdag’s will treat depth variable velocities accu-
rately. Use Stolt’s method to estimate velocities from diffraction events. These algo-

rithms also apply to the next dispersion relation.

Wave-equation stacks of common-midpoint (common-depth-point) gathers should
recognize dips in the orthogonal direction, along midpoint (see section 2.4.2.). Begin
with a narrow cube of seismic data, a function of (y,h,t), that contains 4 to 8 adja-
cent midpoint gathers. Decompose dipping events over y and ¢ with equation (2.7) for
data as a function of (p, ,y, ,t,h) , where y, is the midpoint of the central gather. Sig-
nal extraction should follow to discriminate against noise and artifacts from truncation
of the data. A given common-midpoint gather contains only events with a known dip

along midpoint p, =k, /w . Map (p, ,y, ,w,k; ) to (p, ,y. .k, ,ky ) with

k, = % (V1= (H +vp, /27 +/1-(H - vp, /27 ] . (F.4)

Migrating with (F.4) as F, in (G.1) and (G.2) of Appendix G will provide a depth vari-
able extraction of events containing velocity information. The focusing measure will

then identify the best depth variable velocities.



