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Introdu
tion

Pro
essors use di�erent RMS velo
ity models for three steps of time imaging:

NMO, DMO, and poststa
k time migration. To perform presta
k time migra-

tion in a single step, we must use a single velo
ity model. A single step avoids

an extra stationary-phase approximation and should produ
e more a

urate

results. Nevertheless, results are usually worse with a single velo
ity model,

unless di�erent velo
ities are used for 
at and dipping re
e
tions [8℄. Those

velo
ities whi
h best �t presta
k normal moveouts over o�set (
at re
e
tions)

do not best fo
us the tails of di�ra
tions over midpoint (dipping re
e
tions).

Conventional pro
essing hides this di�eren
e with in
onsistent velo
ity models

for presta
k moveout analysis and poststa
k migration.

O

asionally, pro
essors want to use a higher-order normal-moveout equa-

tion to 
atten presta
k re
e
tions with long o�sets. Conventional moveout

analysis does a good job of �tting the di�eren
e in traveltime between near

and far o�sets, but a higher-order moveout 
an better 
atten any residual

bulge in the middle. Our parameterization of this normal moveout should be


onsistent with the model of anisotropy used in full presta
k time imaging.

It is re
ognized that the kinemati
s of surfa
e re
e
tion seismi
 data are

insensitive to 
omponent of transverse isotropy that is essential for an a

urate


onversion of time to depth. We 
an isolate the parameters needed to �t surfa
e

re
e
tion times and allow depths to be 
alibrated independently.

A single 
onvenient analyti
 approximation of transverse isotropy will allow

us to generalize presta
k moveout, time imaging, and depth 
onversion. No

more parameters will be introdu
ed than ne
essary. Parameters are de
oupled

so that ea
h 
an be estimated in turn, if the additional degrees of freedom are

required to �t the data.

Mu
h of this material originally appeared in an appendix to Harlan [7℄.
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Parameters for approximate transverse isotropy

Assume that anisotropi
 velo
ities have a verti
al axis of symmetry, like the

transversely isotropi
 (TI) media des
ribed in Thomsen [11℄. Although that

paper is titled \Weak elasti
 anisotropy," the same parameterizations 
an be

applied to very strong anisotropy [12℄.

Three of Thomsen's parameters, V

z

, Æ, and �, are de�ned by the elasti



onstants of a general TI medium. These 
onstants 
an be used to spe
ify

three di�erent e�e
tive velo
ities at a single point in the model. V

z

is the

velo
ity of a wave traveling verti
ally along the axis of symmetry. The velo
ity

in any horizontal dire
tion V

x

is de�ned by

� = V

2

x

(V

�2

z

� V

�2

x

)=2; (1)

V

2

x

= (1 + 2�)V

2

z

; and (2)

V

x

� (1 + �)V

z

: (3)

A \normal moveout velo
ity" (NMO) velo
ity V

n

is de�ned by

Æ � V

2

n

(V

�2

z

� V

�2

n

)=2; (4)

V

2

n

= (1 + 2Æ)V

2

z

; and (5)

V

n

� (1 + Æ)V

z

: (6)

If these TI properties represent the equivalent medium of many isotropi
 layers

[3, 10℄, then we 
an expe
t � > Æ [4℄. Using Ba
kus averaging, Phil Anno of

Cono
o has also shown that we 
an expe
t � > 0 and Æ < 0, if the V

s

=V

p

ratio

and V

s

have a positive 
orrelation. These inequalities imply that V

n

� V

z

� V

x

.

Well 
alibrations have shown that shales 
an produ
e Æ > 0. Su
h shales pos-

sess \intrinsi
" anisotropy that 
annot be modeled as the ma
ros
opi
 equiv-

alent of isotropi
 layers.

Resear
hers at the Colorado S
hool of Mines [12, 2℄ have also de�ned a


onstant

� � (�� Æ)=(1 + 2Æ) (7)

= V

2

x

(V

�2

n

� V

�2

x

)=2; (8)

V

2

x

= (1 + 2�)V

2

n

; and (9)

V

x

� (1 + �)V

n

: (10)

For an equivalent medium of isotropi
 layers � > 0.

Many 
ombinations of three of these parameters V

z

; V

x

; V

n

; �; Æ; � 
an be

used to des
ribe a TI medium for 
ompressional P waves with a known axis

of symmetry. Su
h an approximation has already dropped a fourth 
onstant

(shear wave velo
ity) to whi
h 
ompressional waves are insensitive.
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The parameter � is an ex
ellent parameter 
hoi
e for maximum sensitivity

to the kinemati
s of surfa
e measurements only. If TI velo
ities are parame-

terized by V

x

, �, and Æ, we �nd that surfa
e measurements are very insensitive

to Æ. We 
ould not make the same 
laim if � were used instead of �.

I prefer the three velo
ities V

z

; V

x

; and V

n

be
ause they share the same

units. Surfa
e measurements are very insensitive to V

z

, given values for V

x

and V

n

. This 
hoi
e is not the most 
onvenient for pro
essing, however.

Phase and group velo
ities

The exa
t equations for TI phase velo
ity as a fun
tion of angle are rather


lumsy, and no expli
it form is available for group velo
ity. Expli
it approxi-

mate equations 
an �t the same family of 
urves almost as well as the original


orre
t equations [9℄. I use an approximate equation for group velo
ity whi
h

appears to emulate 
losely the exa
t 
urves for large ranges of positive � and

negative Æ. Estimated 
urves usually have larger statisti
al errors from noisy

data than introdu
ed by these approximations.

Kir
hho� migrations 
an 
al
ulate traveltimes by integrating the group

velo
ity along a stationary Fermat raypath. Fourier-domain implementations


an use only the equation for phase velo
ities. Some raytra
ing methods use

both, be
ause phases must be mat
hed a
ross dis
ontinuous boundaries.

I 
hoose approximate 
urves with the three velo
ities V

z

; V

x

; and V

n

. Let

� be the group angle of a raypath from the verti
al. Then the group velo
ity

V (�) 
an be expressed as

V (�)

�2

= V

�2

z


os

2

�+ (V

�2

n

� V

�2

x

) 
os

2

� sin

2

�+ V

�2

x

sin

2

�; (11)

V (�)

�1

= V

�1

x

q

1 + 2� 
os

2

� sin

2

�+ 2� 
os

2

� (12)

� V

�1

x

(1 + � 
os

2

� sin

2

�+ � 
os

2

�) (13)

� V

�1

x

[1 + � 
os

2

�(1 + sin

2

�) + Æ 
os

2

�℄: (14)

Compare Byun et al [5℄, who use the same approximation with di�erent pa-

rameters.

Greg Lazear of Cono
o found that a symmetri
 equation approximates the

phase velo
ity v(�) as a fun
tion of the phase angle �, but with re
ipro
als of

the same velo
ity parameters:

v(�)

2

= V

2

z


os

2

� + (V

2

n

� V

2

x

) 
os

2

� sin

2

� + V

2

x

sin

2

�: (15)

Compare this phase equation 
losely to the group equation (11). I know of no

other approximation that allows su
h symmetry.
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Extended sta
king moveouts

The normal-moveout (NMO) velo
ity V

n

has a physi
al interpretation to justify

its name. Imagine an experiment on a homogeneous and anisotropi
 medium,

or imagine a small s
ale experiment on a smooth model. Measure the travel-

time t

0

between two points pla
ed on a verti
al line, separated by a verti
al

distan
e z = V

z

t

0

. Now displa
e the upper point a distan
e h along a horizontal

line (a normal-moveout) and measure the new traveltime t

h

.

Then a

ording to equation (11) the traveltime t

h

as a fun
tion of o�set h

is exa
tly

t

2

h

= t

2

0

+

"

V

�2

n

+ (V

�2

x

� V

�2

n

)

h

2

h

2

+ V

2

z

t

2

0

#

h

2

: (16)

For small o�sets h � V

z

t

0

, the value of t

h

in this \moveout equation" is

dominated by the NMO velo
ity V

n

rather than V

x

. For large o�sets h� V

z

t

0

,

the raypath is almost horizontal and V

x

dominates.

I �nd it 
onvenient to de�ne a sta
king velo
ity V

h

(h) as a fun
tion of the

o�set h for a �xed verti
al distan
e z = V

z

t

0

:

V

h

(h)

�2

� (t

2

h

� t

2

0

)=h

2

(17)

= V

�2

n

+ (V

�2

x

� V

�2

n

)

h

2

h

2

+ V

2

z

t

2

0

(18)

= V

�2

n

 

1�

2�

1 + 2�

�

h

2

h

2

+ V

2

z

t

2

0

!

: (19)

I use the term sta
king velo
ity be
ause I want to suggest the best-�tting 
urve

over a �nite range of o�sets, as you would prefer for a sta
king or semblan
e

analysis.

Simplify the moveout equation (16) to �t a pseudo-hyperbola:

t

2

h

= t

2

0

+ h

2

=V

h

(h)

2

: (20)

The sta
king velo
ity 
overs the range V

n

� V

h

(h) � V

x

for a Ba
kus equivalent

medium with negative Æ, in
reasing in value as h in
reases. When � = 0, the


urve is exa
tly hyperboli
, and V

n

= V

x

. Noti
e that this sta
king velo
ity


an measure a lo
al property as well as an average to the surfa
e. To use

two-way re
e
tion times in (20) we need only repla
e the half o�set h by the

full o�set.

Three measurements of traveltimes at three di�erent o�sets h should uniquely

determine the three velo
ity 
onstants V

z

, V

x

, V

n

. The traveltimes are mu
h

more sensitive to V

n

, whi
h determines moveouts at small o�sets, and to V

x

,

whi
h determines moveout at larger o�sets. The verti
al velo
ity V

z

a�e
ts

only the rate at whi
h the sta
king velo
ity (18) 
hanges from one limit to the
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other. As long as V

z

has roughly the 
orre
t magnitude, then we 
an �t all

measured traveltimes very well.

For imaging surfa
e data in time, we a
knowledge our insensitivity to V

z

and 
an approximate it with another value. We 
an approximate V

z

� V

n

and

simplify sta
king velo
ity (19) even further, as in

V

h

(h)

�2

� V

�2

n

 

1� 2�

h

2

h

2

+ V

2

n

t

2

0

!

: (21)

This new equation depends only on two parameters, V

x

and V

n

. A better

approximation might be V

z

� V

2

n

=V

x

, or equivalently � � 2Æ, whi
h is probably


loser to 
ommonly observed values. NMO equation (16) now is equivalent to

t

2

h

� t

2

0

+

"

V

�2

n

+ (V

�2

x

� V

�2

n

)

h

2

h

2

+ V

4

n

V

�2

x

t

2

0

#

h

2

: (22)

whi
h is equivalent to equation (5) in Alkhalifah [1℄ and equation (7) in

Gre
hka and Tsvankin [6℄. Both these publi
ations derive from Tsvankin and

Thomsen [12℄, whi
h uses an asymptoti
 
orre
tion of a Taylor expansion to

arrive at this approximation.

The equivalent sta
king velo
ity is then

V

h

(h)

�2

� V

�2

n

 

1� 2�

h

2

h

2

+ V

4

n

V

�2

x

t

2

0

!

: (23)

The di�eren
es between these two approximate sta
king velo
ities (23) and

(21) are negligible for numeri
al work. I will use the simpler version (21).

Moveout analyses determine the sta
king velo
ity for a spe
i�
 aperture

of o�sets. De�ne our best isotropi
 approximation of the velo
ity to be the

sta
king velo
ity V

iso

at the maximum o�set h

max

of the aperture:

V

iso

� V

h

(h

max

) (24)

� V

n

 

1 + �

h

2

max

h

2

max

+ V

2

n

t

2

0

!

: (25)

Or we 
an assume that we know the aperture angle � from the verti
al, so

that

V

iso

� V

n

(1 + � sin

2

�); where tan� = h

max

=V

z

t

0

: (26)

The best isotropi
 velo
ity V

iso

is a simple fun
tion of in�nitesimal-o�set NMO

velo
ity V

n

and the anisotropi
 parameter �. Similarly we 
an use the de�nition

of � in (8) to rewrite the above equation (26) as

V

iso

� V

x

(1� � 
os

2

�): (27)
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This form will prove to be very useful when rewriting our group velo
ity equa-

tions (13) and (14).

A 
onventional velo
ity analysis produ
es densely pi
ked values for V

iso

.

The anisotropi
 parameter � adjusts the moveout between near and far o�sets.

For anisotropi
 moveout analysis, we 
ould use the following o�set-dependent

sta
king velo
ity to s
an for �, holding V

iso


onstant:

V

h

(h)

�2

� V

�2

iso

"

1 + 2�

 

h

2

max

h

2

max

+ V

2

iso

t

2

0

�

h

2

h

2

+ V

2

iso

t

2

0

!#

: (28)

Conventional moveout analysis is not very sensitive to the anisotropi
 parame-

ter � ex
ept for unusually wide-aperture data, with o�sets greater than depth.

Mu
h more anisotropi
 information is available by performing a full presta
k

time migration.

For presta
k time migration, we 
an expe
t that 
onventional analysis for

V

iso

will best des
ribe the moveouts of 
at re
e
tions. Dipping re
e
tions are

diÆ
ult to pi
k in presta
k semblan
e analysis be
ause they are sparser and

move a
ross midpoints, from gather to gather, as migration velo
ity 
hanges.

Holding V

iso


onstant, we 
an perturb � at a low spatial resolution until

the imaging of steep re
e
tions improves. As � 
hanges, there will be a small

adjustment of the bulge in 
at re
e
tions over o�set, with little e�e
t on a fully

time-migrated sta
k. The moveouts of dipping re
e
tions, on the other hand,

will 
hange drasti
ally as � 
hanges, with swings from positive to negative

residual moveouts, and with lateral movement over midpoint. As � improves,

you should see fault-plane re
e
tions sharpen and fo
us in targeted presta
k

time-migrated images Flat re
e
tions should 
hange little, and V

iso

should

require little revision after updating �. By 
ontrast, an optimization of V

n

and

� requires both to be adjusted simultaneously, with equal resolution.

Adjustment for depth ties

The group velo
ity equation (13) is useful for Kir
hho� depth imaging. We


an fo
us images very well with good values for V

x

and V

n

, (or V

iso

and �),

then adjust imaged depths to tie wells with V

z

(or �, or Æ) while holding the

other two parameters 
onstant.

If we have used tomographi
 methods to estimate isotropi
 interval velo
-

ities, then we should attempt also to estimate the e�e
tive aperture angle �

at ea
h depth in the model.

To re
apituate our algebra, we 
ombine the de�nitions of � (9) and of

sta
king velo
ity V

h

(h) (19) to solve for the horizontal velo
ity:

V

�1

x

� V

h

(h

max

)

�1

 

1� �

V

2

z

t

2

0

h

2

max

+ V

2

z

t

2

0

!

(29)

� V

�1

iso

(1� � 
os

2

�): (30)
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At maximum o�set, we re
over our previous relationship (27) between V

iso

and

V

x

. Substitute this horizontal velo
ity into the group velo
ity (13). We 
an

then adjust the isotropi
 velo
ities V

iso

with � and � a

ording to

V (�)

�1

� V

�1

iso

(1� � 
os

2

�)(1 + � 
os

2

� sin

2

�+ � 
os

2

�): (31)

The isotropi
 velo
ity V

iso

best explains the moveouts and traveltimes of rela-

tively 
at re
e
tions over the �nite aperture. The parameter � modi�es these

velo
ities at high dips, to image steep re
e
tions better without degrading

the imaging of low-dip re
e
tions. The third parameter � has little e�e
t on

measured surfa
e traveltimes at any dip (holding V

iso

and � 
onstant), but


an be adjusted as ne
essary to tie wells. We 
an also use layered medium

theory to predi
t this � from estimated � and V

x

. Or if shale dominates, with

strong intrinsi
 anisotropy and Æ > 0, then 
orrelations 
an be 
alibrated for

a given area. At worst, we know 0 < �, so we 
an assume a default value of

�=2 < � < 2�, as appropriate for a given area. Su
h a default value is still

better than a default value of 0.

These three parameters V

iso

, �, and � do not 
ompletely de
ouple the steps

of anisotropi
 velo
ity analysis, but they should minimize the number of iter-

ations ne
essary for revisions.

If you prefer to use Æ instead of � as the third degree of freedom, then

simply use the de�nition of � in (7) for

V (�)

�1

� V

�1

iso

(1� � 
os

2

�)[1 + � 
os

2

�(1 + sin

2

�) + Æ 
os

2

�℄: (32)

Adjustment of narrow-aperture velo
ities

Although I greatly prefer the approa
h in the pre
eding se
tion, many prefer

to treat their estimated isotropi
 velo
ities as equivalent to NMO velo
ities

V

n

. Su
h an assumption is not a bad one if angles are limited during interval

velo
ity estimation. Dix inversion of sta
king velo
ities may be 
loser to V

n

if sta
king velo
ities were 
ons
iously optimized for inner o�sets. The Com-

mon Re
e
ting Surfa
e tomography of Karlsruhe University inverts only the


urvature of re
e
tion traveltimes around zero-o�sets.

For su
h approa
hes, one might prefer a di�erent triplet of velo
ity param-

eters: V

n

, �, and Æ. Group velo
ity 
an be des
ribed by repla
ing V

x

in the

approximation (14) with V

n

and � as in equation (10). Additionally we 
an

repla
e � with Æ, using the de�nition of � in (7):

V (�)

�1

� V

�1

n

(1� � sin

4

�+ Æ 
os

2

�) (33)

� V

�1

n

[1� �(1� 
os

2

� sin

2

�) + � 
os

2

�℄: (34)
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Again V

n

and � should be suÆ
ient to model all surfa
e re
e
tion travel-

times, for all dips. Holding these two 
onstant, we 
an adjust either Æ or � to

tie known well depths.
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