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Introdution

Proessors use di�erent RMS veloity models for three steps of time imaging:

NMO, DMO, and poststak time migration. To perform prestak time migra-

tion in a single step, we must use a single veloity model. A single step avoids

an extra stationary-phase approximation and should produe more aurate

results. Nevertheless, results are usually worse with a single veloity model,

unless di�erent veloities are used for at and dipping reetions [8℄. Those

veloities whih best �t prestak normal moveouts over o�set (at reetions)

do not best fous the tails of di�rations over midpoint (dipping reetions).

Conventional proessing hides this di�erene with inonsistent veloity models

for prestak moveout analysis and poststak migration.

Oasionally, proessors want to use a higher-order normal-moveout equa-

tion to atten prestak reetions with long o�sets. Conventional moveout

analysis does a good job of �tting the di�erene in traveltime between near

and far o�sets, but a higher-order moveout an better atten any residual

bulge in the middle. Our parameterization of this normal moveout should be

onsistent with the model of anisotropy used in full prestak time imaging.

It is reognized that the kinematis of surfae reetion seismi data are

insensitive to omponent of transverse isotropy that is essential for an aurate

onversion of time to depth. We an isolate the parameters needed to �t surfae

reetion times and allow depths to be alibrated independently.

A single onvenient analyti approximation of transverse isotropy will allow

us to generalize prestak moveout, time imaging, and depth onversion. No

more parameters will be introdued than neessary. Parameters are deoupled

so that eah an be estimated in turn, if the additional degrees of freedom are

required to �t the data.

Muh of this material originally appeared in an appendix to Harlan [7℄.
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Parameters for approximate transverse isotropy

Assume that anisotropi veloities have a vertial axis of symmetry, like the

transversely isotropi (TI) media desribed in Thomsen [11℄. Although that

paper is titled \Weak elasti anisotropy," the same parameterizations an be

applied to very strong anisotropy [12℄.

Three of Thomsen's parameters, V

z

, Æ, and �, are de�ned by the elasti

onstants of a general TI medium. These onstants an be used to speify

three di�erent e�etive veloities at a single point in the model. V

z

is the

veloity of a wave traveling vertially along the axis of symmetry. The veloity

in any horizontal diretion V

x

is de�ned by
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A \normal moveout veloity" (NMO) veloity V

n

is de�ned by
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If these TI properties represent the equivalent medium of many isotropi layers

[3, 10℄, then we an expet � > Æ [4℄. Using Bakus averaging, Phil Anno of

Conoo has also shown that we an expet � > 0 and Æ < 0, if the V

s

=V

p

ratio

and V

s

have a positive orrelation. These inequalities imply that V

n

� V

z

� V

x

.

Well alibrations have shown that shales an produe Æ > 0. Suh shales pos-

sess \intrinsi" anisotropy that annot be modeled as the marosopi equiv-

alent of isotropi layers.

Researhers at the Colorado Shool of Mines [12, 2℄ have also de�ned a

onstant

� � (�� Æ)=(1 + 2Æ) (7)
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n
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For an equivalent medium of isotropi layers � > 0.

Many ombinations of three of these parameters V

z

; V

x

; V

n

; �; Æ; � an be

used to desribe a TI medium for ompressional P waves with a known axis

of symmetry. Suh an approximation has already dropped a fourth onstant

(shear wave veloity) to whih ompressional waves are insensitive.
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The parameter � is an exellent parameter hoie for maximum sensitivity

to the kinematis of surfae measurements only. If TI veloities are parame-

terized by V

x

, �, and Æ, we �nd that surfae measurements are very insensitive

to Æ. We ould not make the same laim if � were used instead of �.

I prefer the three veloities V

z

; V

x

; and V

n

beause they share the same

units. Surfae measurements are very insensitive to V

z

, given values for V

x

and V

n

. This hoie is not the most onvenient for proessing, however.

Phase and group veloities

The exat equations for TI phase veloity as a funtion of angle are rather

lumsy, and no expliit form is available for group veloity. Expliit approxi-

mate equations an �t the same family of urves almost as well as the original

orret equations [9℄. I use an approximate equation for group veloity whih

appears to emulate losely the exat urves for large ranges of positive � and

negative Æ. Estimated urves usually have larger statistial errors from noisy

data than introdued by these approximations.

Kirhho� migrations an alulate traveltimes by integrating the group

veloity along a stationary Fermat raypath. Fourier-domain implementations

an use only the equation for phase veloities. Some raytraing methods use

both, beause phases must be mathed aross disontinuous boundaries.

I hoose approximate urves with the three veloities V

z

; V

x

; and V

n

. Let

� be the group angle of a raypath from the vertial. Then the group veloity

V (�) an be expressed as
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Compare Byun et al [5℄, who use the same approximation with di�erent pa-

rameters.

Greg Lazear of Conoo found that a symmetri equation approximates the

phase veloity v(�) as a funtion of the phase angle �, but with reiproals of

the same veloity parameters:
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= V

2
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os
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Compare this phase equation losely to the group equation (11). I know of no

other approximation that allows suh symmetry.
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Extended staking moveouts

The normal-moveout (NMO) veloity V

n

has a physial interpretation to justify

its name. Imagine an experiment on a homogeneous and anisotropi medium,

or imagine a small sale experiment on a smooth model. Measure the travel-

time t

0

between two points plaed on a vertial line, separated by a vertial

distane z = V

z

t

0

. Now displae the upper point a distane h along a horizontal

line (a normal-moveout) and measure the new traveltime t

h

.

Then aording to equation (11) the traveltime t

h

as a funtion of o�set h

is exatly

t

2

h
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0
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n
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2
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2

z

t
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: (16)

For small o�sets h � V

z

t

0

, the value of t

h

in this \moveout equation" is

dominated by the NMO veloity V

n

rather than V

x

. For large o�sets h� V

z

t

0

,

the raypath is almost horizontal and V

x

dominates.

I �nd it onvenient to de�ne a staking veloity V

h

(h) as a funtion of the

o�set h for a �xed vertial distane z = V

z

t

0

:

V

h
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= V
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n

 

1�
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1 + 2�

�

h

2

h

2

+ V

2

z

t

2

0

!

: (19)

I use the term staking veloity beause I want to suggest the best-�tting urve

over a �nite range of o�sets, as you would prefer for a staking or semblane

analysis.

Simplify the moveout equation (16) to �t a pseudo-hyperbola:

t

2

h

= t

2

0

+ h

2

=V

h

(h)

2

: (20)

The staking veloity overs the range V

n

� V

h

(h) � V

x

for a Bakus equivalent

medium with negative Æ, inreasing in value as h inreases. When � = 0, the

urve is exatly hyperboli, and V

n

= V

x

. Notie that this staking veloity

an measure a loal property as well as an average to the surfae. To use

two-way reetion times in (20) we need only replae the half o�set h by the

full o�set.

Three measurements of traveltimes at three di�erent o�sets h should uniquely

determine the three veloity onstants V

z

, V

x

, V

n

. The traveltimes are muh

more sensitive to V

n

, whih determines moveouts at small o�sets, and to V

x

,

whih determines moveout at larger o�sets. The vertial veloity V

z

a�ets

only the rate at whih the staking veloity (18) hanges from one limit to the



A onvenient anisotropy approximation | W.S. Harlan 5

other. As long as V

z

has roughly the orret magnitude, then we an �t all

measured traveltimes very well.

For imaging surfae data in time, we aknowledge our insensitivity to V

z

and an approximate it with another value. We an approximate V

z

� V

n

and

simplify staking veloity (19) even further, as in

V

h
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This new equation depends only on two parameters, V

x

and V

n

. A better

approximation might be V

z

� V

2

n

=V

x

, or equivalently � � 2Æ, whih is probably

loser to ommonly observed values. NMO equation (16) now is equivalent to

t

2

h

� t

2

0
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"
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whih is equivalent to equation (5) in Alkhalifah [1℄ and equation (7) in

Grehka and Tsvankin [6℄. Both these publiations derive from Tsvankin and

Thomsen [12℄, whih uses an asymptoti orretion of a Taylor expansion to

arrive at this approximation.

The equivalent staking veloity is then

V

h

(h)

�2

� V

�2

n

 

1� 2�

h

2

h

2

+ V

4

n

V

�2

x

t

2

0

!
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The di�erenes between these two approximate staking veloities (23) and

(21) are negligible for numerial work. I will use the simpler version (21).

Moveout analyses determine the staking veloity for a spei� aperture

of o�sets. De�ne our best isotropi approximation of the veloity to be the

staking veloity V

iso

at the maximum o�set h

max

of the aperture:

V

iso

� V

h

(h

max

) (24)

� V

n

 

1 + �

h

2

max

h

2

max

+ V

2

n

t

2

0

!

: (25)

Or we an assume that we know the aperture angle � from the vertial, so

that

V

iso

� V

n

(1 + � sin

2

�); where tan� = h

max

=V

z

t

0

: (26)

The best isotropi veloity V

iso

is a simple funtion of in�nitesimal-o�set NMO

veloity V

n

and the anisotropi parameter �. Similarly we an use the de�nition

of � in (8) to rewrite the above equation (26) as

V

iso

� V

x

(1� � os

2

�): (27)
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This form will prove to be very useful when rewriting our group veloity equa-

tions (13) and (14).

A onventional veloity analysis produes densely piked values for V

iso

.

The anisotropi parameter � adjusts the moveout between near and far o�sets.

For anisotropi moveout analysis, we ould use the following o�set-dependent

staking veloity to san for �, holding V

iso

onstant:

V

h

(h)

�2

� V

�2

iso

"

1 + 2�

 

h

2

max

h

2

max

+ V

2

iso

t

2

0

�

h

2

h

2

+ V

2

iso

t

2

0

!#

: (28)

Conventional moveout analysis is not very sensitive to the anisotropi parame-

ter � exept for unusually wide-aperture data, with o�sets greater than depth.

Muh more anisotropi information is available by performing a full prestak

time migration.

For prestak time migration, we an expet that onventional analysis for

V

iso

will best desribe the moveouts of at reetions. Dipping reetions are

diÆult to pik in prestak semblane analysis beause they are sparser and

move aross midpoints, from gather to gather, as migration veloity hanges.

Holding V

iso

onstant, we an perturb � at a low spatial resolution until

the imaging of steep reetions improves. As � hanges, there will be a small

adjustment of the bulge in at reetions over o�set, with little e�et on a fully

time-migrated stak. The moveouts of dipping reetions, on the other hand,

will hange drastially as � hanges, with swings from positive to negative

residual moveouts, and with lateral movement over midpoint. As � improves,

you should see fault-plane reetions sharpen and fous in targeted prestak

time-migrated images Flat reetions should hange little, and V

iso

should

require little revision after updating �. By ontrast, an optimization of V

n

and

� requires both to be adjusted simultaneously, with equal resolution.

Adjustment for depth ties

The group veloity equation (13) is useful for Kirhho� depth imaging. We

an fous images very well with good values for V

x

and V

n

, (or V

iso

and �),

then adjust imaged depths to tie wells with V

z

(or �, or Æ) while holding the

other two parameters onstant.

If we have used tomographi methods to estimate isotropi interval velo-

ities, then we should attempt also to estimate the e�etive aperture angle �

at eah depth in the model.

To reapituate our algebra, we ombine the de�nitions of � (9) and of

staking veloity V

h

(h) (19) to solve for the horizontal veloity:

V

�1

x

� V

h

(h

max

)

�1

 

1� �

V

2

z

t

2

0

h

2

max

+ V

2

z

t

2

0

!

(29)

� V

�1

iso

(1� � os

2

�): (30)
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At maximum o�set, we reover our previous relationship (27) between V

iso

and

V

x

. Substitute this horizontal veloity into the group veloity (13). We an

then adjust the isotropi veloities V

iso

with � and � aording to

V (�)

�1

� V

�1

iso

(1� � os

2

�)(1 + � os

2

� sin

2

�+ � os

2

�): (31)

The isotropi veloity V

iso

best explains the moveouts and traveltimes of rela-

tively at reetions over the �nite aperture. The parameter � modi�es these

veloities at high dips, to image steep reetions better without degrading

the imaging of low-dip reetions. The third parameter � has little e�et on

measured surfae traveltimes at any dip (holding V

iso

and � onstant), but

an be adjusted as neessary to tie wells. We an also use layered medium

theory to predit this � from estimated � and V

x

. Or if shale dominates, with

strong intrinsi anisotropy and Æ > 0, then orrelations an be alibrated for

a given area. At worst, we know 0 < �, so we an assume a default value of

�=2 < � < 2�, as appropriate for a given area. Suh a default value is still

better than a default value of 0.

These three parameters V

iso

, �, and � do not ompletely deouple the steps

of anisotropi veloity analysis, but they should minimize the number of iter-

ations neessary for revisions.

If you prefer to use Æ instead of � as the third degree of freedom, then

simply use the de�nition of � in (7) for

V (�)

�1

� V

�1

iso

(1� � os

2

�)[1 + � os

2

�(1 + sin

2

�) + Æ os

2

�℄: (32)

Adjustment of narrow-aperture veloities

Although I greatly prefer the approah in the preeding setion, many prefer

to treat their estimated isotropi veloities as equivalent to NMO veloities

V

n

. Suh an assumption is not a bad one if angles are limited during interval

veloity estimation. Dix inversion of staking veloities may be loser to V

n

if staking veloities were onsiously optimized for inner o�sets. The Com-

mon Reeting Surfae tomography of Karlsruhe University inverts only the

urvature of reetion traveltimes around zero-o�sets.

For suh approahes, one might prefer a di�erent triplet of veloity param-

eters: V

n

, �, and Æ. Group veloity an be desribed by replaing V

x

in the

approximation (14) with V

n

and � as in equation (10). Additionally we an

replae � with Æ, using the de�nition of � in (7):

V (�)

�1

� V

�1

n

(1� � sin

4

�+ Æ os

2

�) (33)

� V

�1

n

[1� �(1� os

2

� sin

2

�) + � os

2

�℄: (34)
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Again V

n

and � should be suÆient to model all surfae reetion travel-

times, for all dips. Holding these two onstant, we an adjust either Æ or � to

tie known well depths.
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