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Introdu
tion

I �rst implemented this method of automati
 pi
king in 1987-88 while work-

ing at the Osservatorio Geo�si
o Sperimentale in Trieste Italy and at Stanford

University as a visiting s
holar. The implementation was an obvious appli
a-

tion and simpli�
ation of the work of John Toldi [1℄ [2℄ whi
h I had 
losely

followed for several years. That implementation was in a 
omputer language

I now try to forget.

Over the years, I applied that algorithm to many varieties of data, in
luding

noisy data with weak re
e
tions, with large lateral velo
ity anomalies, and with

residual moveouts after presta
k time or depth imaging. I've rarely resorted

to hand-pi
king tools ex
ept as a Q.C. tool for this algorithm.

Re
ently I reimplemented this method to take advantage of a newer C++

Gauss-Newton optimization algorithm, with fewer restri
tions on the number

of spatial dimensions. But the numeri
al properties are exa
tly the same.

The obje
tive fun
tion

First one must perform a sta
king velo
ity analysis to 
onstru
t a hyper
ube

of sta
king semblan
es S(m;x) as a fun
tion of a moveout parameter m and

dimensions x in
luding zero-o�set time and a spatial X and Y.

The moveout parameter should be 
hosen so that resolution is approx-

imately 
onstant for large or small moveouts. I prefer to use the squared

re
ipro
al of a 
onventional sta
king velo
ity. That moveout parameter also


onveniently in
ludes 
at or negative moveouts.

The goal of this algorithm is to �nd a smooth surfa
e m(x) that gives

a single-valued moveout as a fun
tion of all 
oordinates. The surfa
e has a

limited number of degrees of freedom to make the surfa
e sti�. The best

surfa
e maximizes the integral of the semblan
e over all 
oordinates.

max

m(x)

Z

S[m(x);x℄dx (1)

1



Automati
 moveout pi
king| W.S. Harlan 2

This is essentially the same obje
tive fun
tion as used by John Toldi, but

without his tomographi
 
onstraints on moveout. I assume that sti�ness and

hard bounds alone will be suÆ
ient to keep the moveouts reasonable. Zhang

Lin [3℄ similarly dropped Toldi's physi
al 
onstraints, but made more exten-

sive 
hanges to the obje
tive fun
tion and optimization. I make no signi�
ant


hanges to Toldi's obje
tive fun
tion. I use a very 
onventional Gauss-Newton

optimization, with Toldi's iterative smoothing and relaxation to ensure 
on-

vergen
e.

Motivation

Sti�ness prevents the moveout surfa
e from jumping easily from primary re-


e
tions to a multiple and ba
k again. Hard bounds may be ne
essary in

areas where multiples and other 
oherent noise are more 
ommon than pri-

maries. A hard 
onstraint is implemented by simply muting that part of the

semblan
e that falls outside an allowed range. Ranges of moveouts 
an be

spe
i�ed relative to referen
e moveouts, or independently.

The moveout surfa
e is sti� over all spatial dimensions, in
luding time.

This allows more redundan
y over more dimensions than available to a human

interpreter. A surfa
e integral in
ludes the 
ontribution of many weak re
e
-

tions rather than just the few strong re
e
tions visible to the eye on a 
ontour

plot.

Weak lateral velo
ity anomalies 
an 
ause sta
king \velo
ities" to swing

wildly by 50% or more as inner and outer o�sets are delayed relative to ea
h

other. A human interpreter will reje
t su
h swings as unphysi
al, although the


hara
teristi
 signature of su
h anomalies 
an be seen 
learly when neighboring

ensembles are in
luded. An automati
 pi
ker sees more data and �nds the

swings are essential for 
onsisten
y.

Some automati
 pi
kers attempt �rst to identify peaks and �t them se
ond.

Unfortunately all su
h peaks in
uen
e the �nal result, even when they are

in
onsistent with neighbors. An integral, on the other hand, does not in
rease

the penalty of moving farther from a multiple on
e the peak has been found

in
onsistent.

Optimization

A Gauss-Newton algorithm �nds model parameters that best �t some data

after a non-linear transform. This parti
ular obje
tive fun
tion does not look

like an inversion at �rst glan
e: we have an obje
tive fun
tion and a model,

but no data. Let our data be a single value that represents the maximum

normalized integral of semblan
es.

A Gauss Newton algorithm requires three transforms.
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First we need a full non-linear 
al
ulation of the data from the model.

Forward integrate semblan
e S(m;x) over moveouts m and positions x:

d =

Z

S[m(x);x℄dx: (2)

Next, we need a linearized perturbation of the data �d for a perturbation

of the model �m { i.e. a gradient:

�d =

Z

�

�m

S[m(x);x℄ �m(x)dx: (3)

Finally, we need the adjoint of the linearized forward transform:

�m(x) =

�

�m

S[m(x);x℄ �d: (4)

Set data d to the maximum possible normalized sum and plug into your favorite

Gauss-Newton solver.

A
tually, the 
onventional solver requires one modi�
ation. In early it-

erations, the moveout surfa
e is far from the optimum peaks. The surfa
e

needs to be 
lose enough to a peak for the gradient to push the solution in

the 
orre
t dire
tion. Fortunately, John Toldi had a 
lever solution. In early

iterations the surfa
e should be extremely sti� with perhaps only a few basis

fun
tions over the range of ea
h dimension. The semblan
e 
ube should be

heavily smoothed in the dire
tion of the moveout parameter | up to half the

allowed range of values in the �rst iteration. The lo
ations of the peaks are

less a

urate but the surfa
e always �nds itself on a broadened 
ank with the

gradient pointing in the 
orre
t dire
tion. After this small number of degrees

of freedom has been allowed to 
onverge, then later iterations 
an redu
e the

smoothing and in
rease the number of basis fun
tions. In the �nal iteration,

the semblan
e volume is not smoothed at all, and the surfa
e is as 
exible as

the user allows.

Referen
es

[1℄ J. L. Toldi. Velo
ity analysis without pi
king. PhD thesis, Stanford Uni-

versity, 1985.

[2℄ J. L. Toldi. Velo
ity analysis without pi
king. Geophysi
s, 54(2):191{199,

1989.

[3℄ L. Zhang. Automati
 pi
king and its appli
ations. Stanford Ex-

ploration Proje
t Report, http://sepwww.stanford.edu/resear
h/reports/,

70:275{292, 1991.


