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Introdution

I �rst implemented this method of automati piking in 1987-88 while work-

ing at the Osservatorio Geo�sio Sperimentale in Trieste Italy and at Stanford

University as a visiting sholar. The implementation was an obvious applia-

tion and simpli�ation of the work of John Toldi [1℄ [2℄ whih I had losely

followed for several years. That implementation was in a omputer language

I now try to forget.

Over the years, I applied that algorithm to many varieties of data, inluding

noisy data with weak reetions, with large lateral veloity anomalies, and with

residual moveouts after prestak time or depth imaging. I've rarely resorted

to hand-piking tools exept as a Q.C. tool for this algorithm.

Reently I reimplemented this method to take advantage of a newer C++

Gauss-Newton optimization algorithm, with fewer restritions on the number

of spatial dimensions. But the numerial properties are exatly the same.

The objetive funtion

First one must perform a staking veloity analysis to onstrut a hyperube

of staking semblanes S(m;x) as a funtion of a moveout parameter m and

dimensions x inluding zero-o�set time and a spatial X and Y.

The moveout parameter should be hosen so that resolution is approx-

imately onstant for large or small moveouts. I prefer to use the squared

reiproal of a onventional staking veloity. That moveout parameter also

onveniently inludes at or negative moveouts.

The goal of this algorithm is to �nd a smooth surfae m(x) that gives

a single-valued moveout as a funtion of all oordinates. The surfae has a

limited number of degrees of freedom to make the surfae sti�. The best

surfae maximizes the integral of the semblane over all oordinates.

max

m(x)

Z

S[m(x);x℄dx (1)

1



Automati moveout piking| W.S. Harlan 2

This is essentially the same objetive funtion as used by John Toldi, but

without his tomographi onstraints on moveout. I assume that sti�ness and

hard bounds alone will be suÆient to keep the moveouts reasonable. Zhang

Lin [3℄ similarly dropped Toldi's physial onstraints, but made more exten-

sive hanges to the objetive funtion and optimization. I make no signi�ant

hanges to Toldi's objetive funtion. I use a very onventional Gauss-Newton

optimization, with Toldi's iterative smoothing and relaxation to ensure on-

vergene.

Motivation

Sti�ness prevents the moveout surfae from jumping easily from primary re-

etions to a multiple and bak again. Hard bounds may be neessary in

areas where multiples and other oherent noise are more ommon than pri-

maries. A hard onstraint is implemented by simply muting that part of the

semblane that falls outside an allowed range. Ranges of moveouts an be

spei�ed relative to referene moveouts, or independently.

The moveout surfae is sti� over all spatial dimensions, inluding time.

This allows more redundany over more dimensions than available to a human

interpreter. A surfae integral inludes the ontribution of many weak ree-

tions rather than just the few strong reetions visible to the eye on a ontour

plot.

Weak lateral veloity anomalies an ause staking \veloities" to swing

wildly by 50% or more as inner and outer o�sets are delayed relative to eah

other. A human interpreter will rejet suh swings as unphysial, although the

harateristi signature of suh anomalies an be seen learly when neighboring

ensembles are inluded. An automati piker sees more data and �nds the

swings are essential for onsisteny.

Some automati pikers attempt �rst to identify peaks and �t them seond.

Unfortunately all suh peaks inuene the �nal result, even when they are

inonsistent with neighbors. An integral, on the other hand, does not inrease

the penalty of moving farther from a multiple one the peak has been found

inonsistent.

Optimization

A Gauss-Newton algorithm �nds model parameters that best �t some data

after a non-linear transform. This partiular objetive funtion does not look

like an inversion at �rst glane: we have an objetive funtion and a model,

but no data. Let our data be a single value that represents the maximum

normalized integral of semblanes.

A Gauss Newton algorithm requires three transforms.
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First we need a full non-linear alulation of the data from the model.

Forward integrate semblane S(m;x) over moveouts m and positions x:

d =

Z

S[m(x);x℄dx: (2)

Next, we need a linearized perturbation of the data �d for a perturbation

of the model �m { i.e. a gradient:

�d =

Z

�

�m

S[m(x);x℄ �m(x)dx: (3)

Finally, we need the adjoint of the linearized forward transform:

�m(x) =

�

�m

S[m(x);x℄ �d: (4)

Set data d to the maximum possible normalized sum and plug into your favorite

Gauss-Newton solver.

Atually, the onventional solver requires one modi�ation. In early it-

erations, the moveout surfae is far from the optimum peaks. The surfae

needs to be lose enough to a peak for the gradient to push the solution in

the orret diretion. Fortunately, John Toldi had a lever solution. In early

iterations the surfae should be extremely sti� with perhaps only a few basis

funtions over the range of eah dimension. The semblane ube should be

heavily smoothed in the diretion of the moveout parameter | up to half the

allowed range of values in the �rst iteration. The loations of the peaks are

less aurate but the surfae always �nds itself on a broadened ank with the

gradient pointing in the orret diretion. After this small number of degrees

of freedom has been allowed to onverge, then later iterations an redue the

smoothing and inrease the number of basis funtions. In the �nal iteration,

the semblane volume is not smoothed at all, and the surfae is as exible as

the user allows.
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