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Introdution

Tying seismi setions with well piks typially requires estimating a soure

wavelet from a soni log. Few want to repeat this e�ort for eah dataset

with di�erent reording parameters. Eah frequeny of a soure wavelet an

have a di�erent amplitude and phase. A typial phase rotation or amplitude

saling does not hange with frequeny and annot make one arbitrary wavelet

look like another. Instead we should estimate di�erent wavelets diretly from

ross-orrelations of all interseting datasets.

A olletion of independent seismi surveys, 2D lines or 4D vintages, inter-

set eah other, but reetions do not overlay well. Seismi attributes di�er

and ompliate any stratigraphi interpretation, partiularly of thin beds. We

want to apply wavelet orretions to eah of these datasets so that intersetions

tie as well as possible.

One approah was independently implemented by David Makidd of En-

Cana, and by Bishop and Nunns [1℄. This approah ross-orrelates traes

from di�erent surveys near intersetion points. From these ross-orrelations

are extrated time shifts, phase rotations, and sale fators by least-squares

means. Bulk phase-rotations require are with phase-unwrapping, and time

shifts are not independent of phase. These limited orretions may be robust

in the presene of defetive spetra, but at the ost of ignoring arbitrary phase

and amplitude hanges with frequeny.

Instead, we take the approah of Henry and Mellman [3℄, and invert ross-

orrelations diretly for arbitrary wavelets. This problem is very similar to the

more-familiar problem of surfae-onsistent deonvolution (Levin [4℄), whih

solves for predition-error �lters. I have implemented a variation on both. I

solve the same wavelet equalization problem as Henry and Mellman, but with

a non-quadrati objetive funtion more like surfae-onsistent deonvolution,

and with the Gauss-Newton optimization of Harlan [2℄.

1



Cross-balaning interseting surveys | W.S. Harlan 2

Cross-orrelations

Let us index independent seismi lines or datasets by indies i and j. Certain

pairs of lines ross at intersetions indexed by m. Eah m will index a triplet

of indies fm; i; jg. At eah of these intersetions m, a representative trae

d

m

i

(t) from line i will be ross-orrelated with a trae d

m

j

(t) from line j, all as

a funtion of time t. Let us de�ne the ross-orrelation 

m

ij

(t) as a funtion of

lag time t by
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Here the star ? is a onise notation for orrelation, and the asterisk � for

onvolution.

Typially ross-orrelations will be averaged from multiple traes, but I

will assume a single trae in the derivation of a solution.

The model

Assume that a data trae d

m

i

(t) is a onvolution of a short wavelet w

i

(t) that is

spei� to the line i with a reetivity r

m

(t) that is spei� to the intersetion

point m. Also assume additive noise n

m

i

(t) that is spei� to the trae:
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Assume the reetivity is white:

r

m

(t) ? r

m

(t) = R

m

Æ(t); (7)

where R

m

is a onstant, and Æ(t) is an impulse funtion.

Assume noise n

m

i

(t) is unorrelated with anything else:
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A orrelation of two traes an then be rewritten as
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We will only examine ross orrelations where i 6= j, so the disrete delta

funtion Æ

i�j

will be 0.

The objetive funtion

Thus far the assumptions are very similar to those of Henry and Mellman

[3℄. They use time shifts as separate parameters so that their short wavelets

are entered around zero-lag. Their objetive funtion also measures di�er-

enes between third-order onvolutions of measured orrelations with wavelets.

These higher-order terms are easier to optimize with least-squares, but dis-

tribute errors more unpreditably.

I prefer to use longer wavelets to avoid a separate parameterization of

time shifts. I diretly minimize errors in ross-orrelations modeled from the

estimated wavelets. The objetive funtion �nds the olletion of wavelets

w

i

(t) and sale fators R

m
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Sum over the triplets of indies. The damping suppresses unneessary fre-

quenies that do not ontribute signi�antly to the ross-orrelations. The

damping fator � is an appropriate ratio of expeted varianes for noise to

that of wavelets. Conservatively small values are suÆient for stable inverses.

I set the variane of a wavelet sample to 1000 times the variane of a sam-

ple of noise, but this ratio an vary orders of magnitude without signi�antly

a�eting the result.

If reetivities have reasonably onsistent strengths, then one an safely

set all sale fators R

m

to 1. This implementation makes this assumption.

Optimization

This objetive funtion is a non-quadrati funtion of the wavelets w

i

(t), but it

is very amenable to a Gauss-Newton algorithm that iteratively approximates

the objetive funtion as a quadrati.
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Initialize all wavelets to delta funtions. Linearize a perturbation of mod-

eled ross-orrelations �

m

ij

(t) with respet to perturbed wavelets �w

i
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With this linearization, and its linear adjoint, the objetive funtion beomes

a least-squares (quadrati) funtion of the wavelet perturbations. We an use

a standard onjugate-gradient algorithm to solve for the wavelet perturbations

that best �t the orrelations not yet modeled by referene wavelets. Pertur-

bations are saled appropriately (by performing a line searh on the original

objetive funtion) before adding to the referene wavelets.

Corretion of data with estimated wavelets

We an imagine using estimated wavelets diretly for least-squares deonvo-

lution of eah line. This would however unneessarily attempt to whiten the

frequeny spetra. Most likely, the data are already whitened as muh as de-

sired. We also do not want to ompute inverse wavelets expliitly, whih would

amplify some otherwise very weak noisy frequenies.

To avoid unneessary alteration of the spetral olor, we want to reonvolve

all deonvolved traes by a wavelet for a preferred referene line. This referene

line may also be one that has been arefully tied to soni logs or formation

tops by syntheti seismograms. If more than one line is onstrained, then I

share the same wavelet for all during optimization. The estimated wavelet for

these onstrained lines is set aside as the referene wavelet.

For eah of the unonstrained lines I solve for a transfer funtion mapping

the estimated wavelet to the referene wavelet, again with least-squares damp-

ing. Finally the estimated transfer funtions are onvolved with the original

data, ombining the e�ets of deonvolution and reonvolution.

We an also use the estimated wavelets for eah line to extrat simpler

orretions, suh as a bulk time shift, instantaneous phase rotation, and a

sale fator, as did Bishop and Nunns [1℄. These limited orretions should

be more stable and less sensitive to noise. Extrating phase orretions from

estimated wavelets is also more robust than �tting phase shifts piked from

the data. But for any frequenies shared by interseting lines, we know we an

do better and detet more arbitrary di�erenes.

It is possible that ertain lines will ontain frequenies not present in

any interseting lines. These isolated frequenies will be absent from ross-

orrelations. A damped least-squares �t to ross-orrelations will omit these

frequenies from the estimated wavelet. To retain these frequenies, we an
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inlude autoorrelations as well as ross-orrelations in the optimizations. A

�nal orretion to a referene wavelet may remove the isolated frequenies

again.
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