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Introdu
tion

Tying seismi
 se
tions with well pi
ks typi
ally requires estimating a sour
e

wavelet from a soni
 log. Few want to repeat this e�ort for ea
h dataset

with di�erent re
ording parameters. Ea
h frequen
y of a sour
e wavelet 
an

have a di�erent amplitude and phase. A typi
al phase rotation or amplitude

s
aling does not 
hange with frequen
y and 
annot make one arbitrary wavelet

look like another. Instead we should estimate di�erent wavelets dire
tly from


ross-
orrelations of all interse
ting datasets.

A 
olle
tion of independent seismi
 surveys, 2D lines or 4D vintages, inter-

se
t ea
h other, but re
e
tions do not overlay well. Seismi
 attributes di�er

and 
ompli
ate any stratigraphi
 interpretation, parti
ularly of thin beds. We

want to apply wavelet 
orre
tions to ea
h of these datasets so that interse
tions

tie as well as possible.

One approa
h was independently implemented by David Ma
kidd of En-

Cana, and by Bishop and Nunns [1℄. This approa
h 
ross-
orrelates tra
es

from di�erent surveys near interse
tion points. From these 
ross-
orrelations

are extra
ted time shifts, phase rotations, and s
ale fa
tors by least-squares

means. Bulk phase-rotations require 
are with phase-unwrapping, and time

shifts are not independent of phase. These limited 
orre
tions may be robust

in the presen
e of defe
tive spe
tra, but at the 
ost of ignoring arbitrary phase

and amplitude 
hanges with frequen
y.

Instead, we take the approa
h of Henry and Mellman [3℄, and invert 
ross-


orrelations dire
tly for arbitrary wavelets. This problem is very similar to the

more-familiar problem of surfa
e-
onsistent de
onvolution (Levin [4℄), whi
h

solves for predi
tion-error �lters. I have implemented a variation on both. I

solve the same wavelet equalization problem as Henry and Mellman, but with

a non-quadrati
 obje
tive fun
tion more like surfa
e-
onsistent de
onvolution,

and with the Gauss-Newton optimization of Harlan [2℄.

1



Cross-balan
ing interse
ting surveys | W.S. Harlan 2

Cross-
orrelations

Let us index independent seismi
 lines or datasets by indi
es i and j. Certain

pairs of lines 
ross at interse
tions indexed by m. Ea
h m will index a triplet

of indi
es fm; i; jg. At ea
h of these interse
tions m, a representative tra
e

d

m

i

(t) from line i will be 
ross-
orrelated with a tra
e d

m

j

(t) from line j, all as

a fun
tion of time t. Let us de�ne the 
ross-
orrelation 


m

ij

(t) as a fun
tion of

lag time t by




m

ij

(t) =

Z

d

m

i

(� � t)d

m

j

(�)d� (1)

=

Z

d

m

i

(�)d

m

j

(� + t)d� (2)

= d

m

i

(t) ? d

m

j

(t) (3)

= d

m

i

(�t) � d

m

j

(t): (4)

Here the star ? is a 
on
ise notation for 
orrelation, and the asterisk � for


onvolution.

Typi
ally 
ross-
orrelations will be averaged from multiple tra
es, but I

will assume a single tra
e in the derivation of a solution.

The model

Assume that a data tra
e d

m

i

(t) is a 
onvolution of a short wavelet w

i

(t) that is

spe
i�
 to the line i with a re
e
tivity r

m

(t) that is spe
i�
 to the interse
tion

point m. Also assume additive noise n

m

i

(t) that is spe
i�
 to the tra
e:

d

m

i

(t) =

Z

r

m

(t� �)w

i

(�)d� + n

m

i

(t) (5)

= r

m

(t) � w

i

(t) + n

m

i

(t): (6)

Assume the re
e
tivity is white:

r

m

(t) ? r

m

(t) = R

m

Æ(t); (7)

where R

m

is a 
onstant, and Æ(t) is an impulse fun
tion.

Assume noise n

m

i

(t) is un
orrelated with anything else:

n

m

i

(t) ? n

m

i

(t) � N(t): (8)

n

m

i

(t) ? n

m

j

(t) = 0; 8i 6= j: (9)

n

m

i

(t) ? r

m

(t) = 0; 8i: (10)

n

m

i

(t) ? w

j

(t) = 0; 8i; j: (11)



Cross-balan
ing interse
ting surveys | W.S. Harlan 3

A 
orrelation of two tra
es 
an then be rewritten as




m

ij

(t) = d

m

i

(t) ? d

m

j

(t) (12)

= [r

m

(t) � w

i

(t) + n

m

i

(t)℄ ? [r

m

(t) � w

j

(t) + n

m

j

(t)℄ (13)

= [r

m

(�t) � w

i

(�t) + n

m

i

(�t)℄ � [r

m

(t) � w

j

(t) + n

m

j

(t)℄ (14)

= [r

m

(�t) � w

i

(�t) � r

m

(t) � w

j

(t)℄ + [n

m

i

(�t) � n

m

j

(t)℄ (15)

= [r

m

(t) ? r

m

(t)℄ � [w

i

(t) ? w

j

(t)℄ + [n

m

i

(t) ? n

m

j

(t)℄ (16)

= R

m

[w

i

(t) ? w

j

(t)℄ + Æ

i�j

N(t): (17)

We will only examine 
ross 
orrelations where i 6= j, so the dis
rete delta

fun
tion Æ

i�j

will be 0.

The obje
tive fun
tion

Thus far the assumptions are very similar to those of Henry and Mellman

[3℄. They use time shifts as separate parameters so that their short wavelets

are 
entered around zero-lag. Their obje
tive fun
tion also measures di�er-

en
es between third-order 
onvolutions of measured 
orrelations with wavelets.

These higher-order terms are easier to optimize with least-squares, but dis-

tribute errors more unpredi
tably.

I prefer to use longer wavelets to avoid a separate parameterization of

time shifts. I dire
tly minimize errors in 
ross-
orrelations modeled from the

estimated wavelets. The obje
tive fun
tion �nds the 
olle
tion of wavelets

w

i

(t) and s
ale fa
tors R

m

that best minimize

min

w

i

(t);R

m

X

fm;i;jg

Z

f


m

ij

(t)� R

m

[w

i

(t) ? w

j

(t)℄g

2

dt+ �

X

i

Z

[w

i

(t)℄

2

dt: (18)

Sum over the triplets of indi
es. The damping suppresses unne
essary fre-

quen
ies that do not 
ontribute signi�
antly to the 
ross-
orrelations. The

damping fa
tor � is an appropriate ratio of expe
ted varian
es for noise to

that of wavelets. Conservatively small values are suÆ
ient for stable inverses.

I set the varian
e of a wavelet sample to 1000 times the varian
e of a sam-

ple of noise, but this ratio 
an vary orders of magnitude without signi�
antly

a�e
ting the result.

If re
e
tivities have reasonably 
onsistent strengths, then one 
an safely

set all s
ale fa
tors R

m

to 1. This implementation makes this assumption.

Optimization

This obje
tive fun
tion is a non-quadrati
 fun
tion of the wavelets w

i

(t), but it

is very amenable to a Gauss-Newton algorithm that iteratively approximates

the obje
tive fun
tion as a quadrati
.
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Initialize all wavelets to delta fun
tions. Linearize a perturbation of mod-

eled 
ross-
orrelations �


m

ij

(t) with respe
t to perturbed wavelets �w

i

(t):

�


m

ij

(t) � R

m

[w

i

(t) + �w

i

(t)℄ ? [w

j

(t) + �w

j

(t)℄ (19)

� R

m

[w

i

(t) ? w

j

(t)℄ (20)

� R

m

[w

i

(t) ?�w

j

(t) + �w

i

(t) ? w

j

(t)℄: (21)

With this linearization, and its linear adjoint, the obje
tive fun
tion be
omes

a least-squares (quadrati
) fun
tion of the wavelet perturbations. We 
an use

a standard 
onjugate-gradient algorithm to solve for the wavelet perturbations

that best �t the 
orrelations not yet modeled by referen
e wavelets. Pertur-

bations are s
aled appropriately (by performing a line sear
h on the original

obje
tive fun
tion) before adding to the referen
e wavelets.

Corre
tion of data with estimated wavelets

We 
an imagine using estimated wavelets dire
tly for least-squares de
onvo-

lution of ea
h line. This would however unne
essarily attempt to whiten the

frequen
y spe
tra. Most likely, the data are already whitened as mu
h as de-

sired. We also do not want to 
ompute inverse wavelets expli
itly, whi
h would

amplify some otherwise very weak noisy frequen
ies.

To avoid unne
essary alteration of the spe
tral 
olor, we want to re
onvolve

all de
onvolved tra
es by a wavelet for a preferred referen
e line. This referen
e

line may also be one that has been 
arefully tied to soni
 logs or formation

tops by syntheti
 seismograms. If more than one line is 
onstrained, then I

share the same wavelet for all during optimization. The estimated wavelet for

these 
onstrained lines is set aside as the referen
e wavelet.

For ea
h of the un
onstrained lines I solve for a transfer fun
tion mapping

the estimated wavelet to the referen
e wavelet, again with least-squares damp-

ing. Finally the estimated transfer fun
tions are 
onvolved with the original

data, 
ombining the e�e
ts of de
onvolution and re
onvolution.

We 
an also use the estimated wavelets for ea
h line to extra
t simpler


orre
tions, su
h as a bulk time shift, instantaneous phase rotation, and a

s
ale fa
tor, as did Bishop and Nunns [1℄. These limited 
orre
tions should

be more stable and less sensitive to noise. Extra
ting phase 
orre
tions from

estimated wavelets is also more robust than �tting phase shifts pi
ked from

the data. But for any frequen
ies shared by interse
ting lines, we know we 
an

do better and dete
t more arbitrary di�eren
es.

It is possible that 
ertain lines will 
ontain frequen
ies not present in

any interse
ting lines. These isolated frequen
ies will be absent from 
ross-


orrelations. A damped least-squares �t to 
ross-
orrelations will omit these

frequen
ies from the estimated wavelet. To retain these frequen
ies, we 
an
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in
lude auto
orrelations as well as 
ross-
orrelations in the optimizations. A

�nal 
orre
tion to a referen
e wavelet may remove the isolated frequen
ies

again.
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