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Preliminaries

Begin with 
onservation of momentum for a 
ontinuous medium:
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where t is time, and x

~

(with elements x

j

) the ve
tor of spatial 
oordinates. � is

the density, u

j

the displa
ement ve
tor, F

j

the body for
e ve
tor, and �

jk

the stress

tensor. Ea
h dot indi
ates a time derivative.

Tensor notation will be used. Ordinary subs
ripts index the spatial 
omponents of

ve
tors and tensors. Subs
ripts appearing after a 
omma indi
ate a spatial deriva-

tive in the indexed dire
tion. The summation 
onvention requires that repeated

subs
ripts, like k in equation (1), be impli
itly summed and eliminated.

Next, Hooke's Law assumes a linear relationship between the stress tensor and a

spatially di�erentiated displa
ement ve
tor, 
alled the strain tensor:
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The tensor 


jklm

is the elasti
 sti�ness, with a maximum of 21 independent 
ompo-

nents in a three-dimensional 
oordinate system. The following symmetries always

hold:
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kjlm
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lmjk

; so
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(3)

Combining the equations (1) and (2) to eliminate the stress tensor produ
es the

elasti
 wave equation:
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We use the Fourier kernal exp(i2�ft) to transform from frequen
y f to time t. The

inverse transformation uses the 
omplex 
onjugate.
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Tildes will mark Fourier transformed fun
tions.

Energy Flow

A raypath should indi
ate the 
ow and dire
tion of energy in a wave�eld. Only in

isotropi
 media 
an we assume that this 
ow of energy is perpendi
ular to wavefronts.
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To des
ribe energy 
ow, we do not even need to know how to de
ompose the wave�eld

into modes and wavefronts.

Take the dot produ
t of ea
h side of the elasti
 wave equation (4) with _u

j

.
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(The symmetries of equation (3) were used.) This equation is in the form of a


onservation law:
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is the total energy density, and
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is the energy 
ow, or Poynting ve
tor.

De�ne the group velo
ity (or energy velo
ity) g

j

by

J

j

(x
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; t) � �(x
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; t)g
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(x
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; t): (10)

The energy 
ow equals the energy density times the energy (group) velo
ity. Ray-

paths are generally de�ned to follow energy. Let us de�ne a raypath as a 
urve

whi
h is tangent to the group velo
ity ve
tor at every point. In the anisotropi
 
ase,

raypaths will not ne
essarily be perpendi
ular to wavefronts.

Wave Mode De
omposition

Assume that a solution for the displa
ement ve
tor u

j

(x

~

; t) is well approximated

lo
ally by the approximation:
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where a

j

gives the lo
al amplitude and � modulates the phase a

ording to the time

delay T .

Substituting equation (11) into (4) gives the following (suppressing arguments):
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where s

j

(x

~

) = T

;j

(x

~

) is the phase slowness ve
tor, pointing in the dire
tion of a lo
al

plane wave, with a magnitude equal to the re
ipro
al of the wave velo
ity.

In the frequen
y domain, we �nd a similar expression, grouped by powers of f .
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To allow non-vanishing �, ea
h of these three s
aled terms should vanish in areas

with a vanishing body for
e F

j

.

The �rst term produ
es the equation appropriate for a high-frequen
y limit|a ve
tor

version of the Eikonal equation:
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Noti
e that this equation is independent of time or frequen
y. If we s
ale equation

(14) with a phase velo
ity v(x

~

) = js

~

(x
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)j

�1

, the re
ipro
al of the magnitude of the

phase slowness, then
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Choose a unit normal ŝ

j

= vs

j

to a parti
ular plane wave. The eigenvalues of equation

(15) equal the squared velo
ities, and the eigenve
tors give the polarity of di�erent

wave modes (i.e. 
ompressional and shear waves).

Equations (14) and (15) resemble the Christo�el equation, whi
h Fourier transforms

the spatial dimensions and assumes a homogeneous material. Rather than assume

global homogeneity, I prefer a high-frequen
y approximation that assumes sti�ness

to 
hange slowly over the spatial wavelengths of the propagating wavefront.

A plot of js

~

j as a fun
tion of
^
s

~

is 
alled a slowness surfa
e. A plot of v = js

~

j

�1

as a

fun
tion of ŝ is 
alled a normal surfa
e.

The remaining terms of (13) give \Transport equations" in regions of vanishing body

sour
es:
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These fun
tions are also independent of time and frequen
y.

Mode energy 
ow

Substituting the approximation (11) into the total energy density (8), we �nd
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Be
ause of equation (14), these two terms are equal|i.e., the kineti
 equals the

potential energy density.
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Similarly, the energy 
ow (9) be
omes
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Substituting energy density (18) and energy 
ow (19) into the de�nition of group

velo
ity (10), we �nd the following equality:
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Equation (14) has allowed the last equality. Noti
e that, under this approximation,

the group velo
ity is fun
tion only of position, not time or frequen
y. A plot of jg

~

j as

a fun
tion of dire
tion
^
g

~

is 
alled a ray surfa
e.

If both sides of equation (20) are dotted with the slowness ve
tor s

j

(x

~

), then we �nd

that

g
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) = 1: (21)

This important result states that the dot produ
t of the group velo
ity ve
tor with

the slowness ve
tor is unity. The slowness ve
tor is perpendi
ular to the wavefront,

by 
onstru
tion, but the group velo
ity ve
tor is not, unless the group and phase

velo
ities are equal.

To propagate a wavefront one small step �t in time, we �rst 
al
ulate the normal
^
s

~

to ea
h point on the wavefront. The phase velo
ity v = j
^
s

~

j

�1

along the wavefront is

given by the appropriate eigenvalues of equation (14). With this value of s

~

=
^
s

~

=v,

we 
an 
al
ulate the group velo
ity g

~

by substitution into equation (20). Ea
h point

on the wavefront 
an be extrapolated in the dire
tion of g

~

by a perturbation g

~

��t.

Finally, we 
onne
t the revised points on the wavefront and re
al
ulate the normal

ve
tors
^
s

~

.

It is possible to 
al
ulate a group velo
ity surfa
e from a slowness surfa
e numeri
ally,

and vi
e versa. Assuming the elasti
 material desribed by the sti�ness tensor C

~

~

and

the density � to be �xed, let us perturb the slowness ve
tor s

~

+Æs

~

and parti
le motion

^
a

~

+ Æ
^
a

~

in a way that 
ontinues to satisfy equation (14). Expanded to �rst order,
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Take the dot produ
t of both sides with a

j

and regroup,
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We have used the de�nition of group velo
ity (20), the Eikonal equation (14), and

the symmetries of sti�ness (3) to simplify the terms in bra
kets. Subtra
ting the

identi
al terms we �nd the simple result

g

j

Æs

j

= 0: (24)

And be
ause of (21), we also have

s

j
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= �g
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The perturbation s

~

+Æs

~

must lie along the slowness surfa
e to be a valid perturbation.

Thus, s

~

is tangent to the slowness surfa
e, and g

~

is perpendi
ular to the slowness

surfa
e. Similarly, the phase slowness is perpendi
ular to the ray surfa
e.

The normal relations implied by (25) allow us to 
al
ulate the angle between s

~

and g

~

.

If we know the magnitude of one ve
tor, then equation (21) allows us to 
al
ulate the

magnitude of the other ve
tor. If we have already 
onstru
ted a slowness surfa
e, then

group velo
ity dire
tions are 
al
ulated as normals to this surfa
e. The magnitudes

of the group velo
ities derive from the 
osine relation (21), providing all information

ne
essary to draw the ray surfa
e. Similarly, the slowness surfa
e 
an be 
onstru
ted

from a ray surfa
e.

Impulsive sour
e

Assume a body for
e with an arbitrary wavelet at an impulsive lo
ation: x
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The only term of equation (13) that 
ould 
an
el this impulsive term would involve

the se
ond spatial derivative of a
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). Thus,
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Sin
e the approximation (11) allows for an arbitrary s
aling of the amplitude and

phase terms, we 
an assume that our solution sets

�(t) = w(t); and
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