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Preliminaries

Begin with onservation of momentum for a ontinuous medium:
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where t is time, and x
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(with elements x

j

) the vetor of spatial oordinates. � is

the density, u
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the displaement vetor, F
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the body fore vetor, and �

jk

the stress

tensor. Eah dot indiates a time derivative.

Tensor notation will be used. Ordinary subsripts index the spatial omponents of

vetors and tensors. Subsripts appearing after a omma indiate a spatial deriva-

tive in the indexed diretion. The summation onvention requires that repeated

subsripts, like k in equation (1), be impliitly summed and eliminated.

Next, Hooke's Law assumes a linear relationship between the stress tensor and a

spatially di�erentiated displaement vetor, alled the strain tensor:

�

jk

(x

~

; t) = 

jklm

(x

~

) � u

l;m

(x

~

; t): (2)

The tensor 

jklm

is the elasti sti�ness, with a maximum of 21 independent ompo-

nents in a three-dimensional oordinate system. The following symmetries always

hold:
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Combining the equations (1) and (2) to eliminate the stress tensor produes the

elasti wave equation:
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We use the Fourier kernal exp(i2�ft) to transform from frequeny f to time t. The

inverse transformation uses the omplex onjugate.
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Tildes will mark Fourier transformed funtions.

Energy Flow

A raypath should indiate the ow and diretion of energy in a wave�eld. Only in

isotropi media an we assume that this ow of energy is perpendiular to wavefronts.
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To desribe energy ow, we do not even need to know how to deompose the wave�eld

into modes and wavefronts.

Take the dot produt of eah side of the elasti wave equation (4) with _u

j

.
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(The symmetries of equation (3) were used.) This equation is in the form of a

onservation law:
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is the total energy density, and
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is the energy ow, or Poynting vetor.

De�ne the group veloity (or energy veloity) g
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The energy ow equals the energy density times the energy (group) veloity. Ray-

paths are generally de�ned to follow energy. Let us de�ne a raypath as a urve

whih is tangent to the group veloity vetor at every point. In the anisotropi ase,

raypaths will not neessarily be perpendiular to wavefronts.

Wave Mode Deomposition

Assume that a solution for the displaement vetor u
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loally by the approximation:
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where a

j

gives the loal amplitude and � modulates the phase aording to the time

delay T .

Substituting equation (11) into (4) gives the following (suppressing arguments):
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where s

j

(x

~

) = T
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(x
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) is the phase slowness vetor, pointing in the diretion of a loal

plane wave, with a magnitude equal to the reiproal of the wave veloity.

In the frequeny domain, we �nd a similar expression, grouped by powers of f .
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To allow non-vanishing �, eah of these three saled terms should vanish in areas

with a vanishing body fore F

j

.

The �rst term produes the equation appropriate for a high-frequeny limit|a vetor

version of the Eikonal equation:
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Notie that this equation is independent of time or frequeny. If we sale equation

(14) with a phase veloity v(x
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Choose a unit normal ŝ

j

= vs

j

to a partiular plane wave. The eigenvalues of equation

(15) equal the squared veloities, and the eigenvetors give the polarity of di�erent

wave modes (i.e. ompressional and shear waves).

Equations (14) and (15) resemble the Christo�el equation, whih Fourier transforms

the spatial dimensions and assumes a homogeneous material. Rather than assume

global homogeneity, I prefer a high-frequeny approximation that assumes sti�ness

to hange slowly over the spatial wavelengths of the propagating wavefront.

A plot of js

~

j as a funtion of
^
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is alled a slowness surfae. A plot of v = js
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as a

funtion of ŝ is alled a normal surfae.

The remaining terms of (13) give \Transport equations" in regions of vanishing body

soures:
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These funtions are also independent of time and frequeny.

Mode energy ow

Substituting the approximation (11) into the total energy density (8), we �nd
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Beause of equation (14), these two terms are equal|i.e., the kineti equals the

potential energy density.
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Similarly, the energy ow (9) beomes
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Substituting energy density (18) and energy ow (19) into the de�nition of group

veloity (10), we �nd the following equality:
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Equation (14) has allowed the last equality. Notie that, under this approximation,

the group veloity is funtion only of position, not time or frequeny. A plot of jg

~

j as

a funtion of diretion
^
g
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is alled a ray surfae.

If both sides of equation (20) are dotted with the slowness vetor s
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This important result states that the dot produt of the group veloity vetor with

the slowness vetor is unity. The slowness vetor is perpendiular to the wavefront,

by onstrution, but the group veloity vetor is not, unless the group and phase

veloities are equal.

To propagate a wavefront one small step �t in time, we �rst alulate the normal
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��t.

Finally, we onnet the revised points on the wavefront and realulate the normal

vetors
^
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~
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It is possible to alulate a group veloity surfae from a slowness surfae numerially,
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Take the dot produt of both sides with a
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We have used the de�nition of group veloity (20), the Eikonal equation (14), and

the symmetries of sti�ness (3) to simplify the terms in brakets. Subtrating the

idential terms we �nd the simple result
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The perturbation s

~

+Æs

~

must lie along the slowness surfae to be a valid perturbation.

Thus, s

~

is tangent to the slowness surfae, and g

~

is perpendiular to the slowness

surfae. Similarly, the phase slowness is perpendiular to the ray surfae.

The normal relations implied by (25) allow us to alulate the angle between s

~

and g

~

.

If we know the magnitude of one vetor, then equation (21) allows us to alulate the

magnitude of the other vetor. If we have already onstruted a slowness surfae, then

group veloity diretions are alulated as normals to this surfae. The magnitudes

of the group veloities derive from the osine relation (21), providing all information

neessary to draw the ray surfae. Similarly, the slowness surfae an be onstruted

from a ray surfae.

Impulsive soure

Assume a body fore with an arbitrary wavelet at an impulsive loation: x

~

0

:

F

j

(x

~

; t) = w(t)b

j

Æ(x

~

� x

~

0

); and

~

F

j

(x

~

; f) = ~w(f)Æ(x

~

� x

~

0

): (26)

The only term of equation (13) that ould anel this impulsive term would involve
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Sine the approximation (11) allows for an arbitrary saling of the amplitude and

phase terms, we an assume that our solution sets
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