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abstra
t

We automati
ally improve an interval velo
ity model after pi
king residual in-


onsisten
ies from 
onstant-o�set depth migrations. For generality, we employ

a re
e
tion traveltime tomography algorithm, whi
h allows other appli
ations

and other sour
es of information.

Many methods of depth migration velo
ity analysis emphasize well-fo
used

images and use tools similar to semblan
e sta
ks. Others linearize and in-

vert the e�e
t of perturbed velo
ities on migrated images. We prefer to use

developed methods of re
e
tion traveltime tomography by 
onverting pi
ked

migrated re
e
tions into equivalent multi-o�set traveltimes.

Re
e
tion traveltime tomography �nds interval velo
ities and re
e
tion ge-

ometries that best explain observed surfa
e re
e
tion times. Re
e
tion tomog-

raphy has evolved away from layered models toward independent parameters

for velo
ities and re
e
tors. Interval velo
ities are parameterized as a smooth

fun
tion of spatial 
oordinates. Re
e
tions are des
ribed by a 
olle
tion of


ommon-re
e
tion points, whi
h do not assume more 
ontinuity than ne
es-

sary to re
onstru
t pi
ked segments of pi
ked re
e
tion times.

Migration fa
ilitates presta
k pi
king by simplifying di�ra
ted re
e
tions

and dispersing noise. The e�e
tive signal-to-noise ratio improves. Depth mi-

gration does not add information to re
e
tions, however. In fa
t, the bias of

a poor velo
ity model must be removed by re
onstru
ting the presta
k travel-

times that produ
ed the poor migration. To do so, we re
onstru
t the paths

and surfa
e geometries for ea
h of the pi
ked migrated re
e
tor positions.

Conventional dynami
 ray methods or extrapolated traveltime tables suÆ
e.

Constant-o�set se
tions of a North Sea line were independently migrated

in depth and viewed on a 3D interpretive workstation. One re
e
tion at the

base of 
halk imaged at in
onsistent depths over o�set. The migrated depths

of this and other re
e
tions were pi
ked over a range of o�sets. Equivalent
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presta
k traveltimes were modeled through the migration velo
ity model. The


hosen method of traveltime tomography impli
itly en
ouraged 
onsisten
y in


ommon-re
e
tion points for raypaths at various o�sets. The �nal estimated

velo
ity model showed an in
rease in velo
ities near the base of the 
halk,

then a de
rease in velo
ities below. Remigration of the data with the revised

velo
ities greatly in
reased the visibility of the re
e
tion at the base of the


halk.

Dynami
 ray methods and expli
it traveltime extrapolations identify 
om-

mon-re
e
tion points that best model presta
k traveltimes. The error between

a modeled and measured traveltime is 
onverted into an equivalent positioning

error for the re
e
tion point. Velo
ities are revised to minimize the varian
e

of these positioning errors for all o�sets of ea
h 
ommon-re
e
tion point.

Introdu
tion

Velo
ity analysis of seismi
 data after presta
k depth migration has largely


on
entrated on better fo
used images of re
e
tors (e.g. Jeannot et al, 1986;

Al-Yahya, 1989; and Ma
Kay and Abma, 1989). Others have formulated to-

mographi
 methods that dire
tly optimize the e�e
t of velo
ities on migrated

depths (Fowler, 1988; Etgen, 1990; van Trier, 1990). Velo
ity models are ex-

pe
ted to produ
e 
onsistent images in depth from independently migrated

gathers: usually 
ommon-o�set or 
ommon-shot. Iteratively linearized inver-

sions 
an perturb velo
ity models to redu
e these in
onsisten
ies. Ea
h of

these methods requires an algorithm designed spe
i�
ally for depth migration,

with no other obvious appli
ation.

Alternatively, we prefer to use presta
k depth migrations as a sour
e of

information for already existing methods of re
e
tion traveltime tomography,

su
h as Sattlegger et al (1981), Bishop et al (1985), Bording et al (1987),

Sword (1987), Dyer and Worthington (1988), Sherwood (1989), Harlan et al

(1989, 1991), and Stork and Clayton (1991). These methods usually require

lists of pi
ked re
e
tion times for many sour
e and re
eiver 
ombinations. The

estimated interval velo
ities are also used to dete
t the anomalous velo
ities

of gas and overpressure, and to 
orre
t the distortions of stru
ture by shal-

low velo
ity 
hanges (\buried stati
s"). Those interested only in appli
ations

to depth migration still bene�t from simpler algorithms, with broader appli-


ation, and with better-understood properties. Those interested most in the

interpretation of velo
ities �nd that migration improves the quality of presta
k

pi
king.

Few independently developed methods of re
e
tion traveltime tomogra-

phy share identi
al physi
al parameters, input data, or numeri
al methods.

This paper attempts to isolate features that adapt to a variety of data with

the fewest physi
al 
onstraints. Sattlegger et al (1981) introdu
ed the to-

mographi
 optimization of layered models: 
ontinuous re
e
tors that verti-
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ally delimit sharp 
hanges in interval velo
ities, usually with smooth lateral


hanges. With few parameters, layer boundaries and velo
ities 
an be opti-

mized simultaneously. Sherwood's survey (1989) shows the 
ontinuing popu-

larity of this model. The �rst three-dimensional appli
ations (Chiu et al, 1986)

extended the layered model.

Bishop et al (1985), Bording et al (1987), Dyer and Worthington (1988),

and Toldi (1989) preferred models that de
ouple velo
ities and re
e
tor ge-

ometries. Velo
ities 
an vary 
ontinuously, with resolution dependent on dis-


retization and binning. Sword (1987), Harlan et al (1989, 1991), Biondi

(1990), van Trier (1990), and others avoided 
ontinuous re
e
tors and esti-

mated 
ommon-re
e
tion points. The additional degrees of freedom raise 
on-


erns about 
onvergen
e. Fowler (1988), Etgen (1990), and Stork and Clayton

(1991) 
arefully analyzed the e�e
t of perturbed velo
ities on migrated re
e
-

tion points and 
on
luded that both must be perturbed simultaneously. We

introdu
e a simple method of doing so.

These papers use a variety of input data: pi
ked presta
k traveltimes,

pi
ked presta
k depth migrations, 
onstant velo
ity time migrations, pi
ked

\sta
king velo
ities," semblan
e panels, lo
al slant sta
ks, and beam sta
ks.

We have been able to optimize many of these alternative forms of data by

treating them as simple fun
tions of traveltimes. Although we pi
k migrated

depths from our example data, we optimize an equivalent set of presta
k re-


e
tion times.

An example of depth migration errors

Figure 1 displays a presta
k (Kir
hho�) depth migration of a seismi
 line from

the Netherlands' North Sea, spanning 11.25 km of midpoints and 5 km depth.

Constant-o�set se
tions were migrated independently, then sta
ked over o�set

to produ
e a single image. The original velo
ities were largely strati�ed and

only in
reased with depth. (500 tra
es are spa
ed at 22.5 m|one for ea
h

original shot position.)

When the unsta
ked 
ube of migrated data was examined on a 3D inter-

pretative workstation, some re
e
tions were seen to align poorly over o�set.

Figure 2 shows some \
ommon-image point" (CIP) gathers. Ea
h gather shows

the image for a single horizontal position and a range of depths and o�sets

(154 m to 2000 m o�set). Note that the re
e
tor at shot position 400 and

2750 m depth is very in
onsistent over o�set. (Constant-o�set depth migra-

tions do not have the numeri
al artifa
ts from edge e�e
ts found in shot pro�le

migrations. See other di�eren
es in Cox and Wapenaar, 1992.)

Figure 3 shows the pi
ks of migrated re
e
tions at various o�sets. At

least �ve o�sets were pi
ked for ea
h re
e
tor, always in
luding a near o�set

of 154 m. The maximum pi
kable o�set in
reased linearly from 1300 m at

800 m depth to 3574 m at 4800 m depth. The grey levels in �gure 3 show the
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transmission velo
ity model used to migrate the data originally. A few sample

re
e
tion raypaths are shown. (This �gure spans the same distan
es as �gure

1.)

The pi
ks of most re
e
tions are almost indistinguishable. The re
e
tor

near 2500 m depth lies beneath a 1000 m thi
k interval of 
halk and shows


onsiderable in
onsisten
y over o�sets 154 m to 2700 m. The 
halk velo
ity


annot be adjusted to 
atten this one re
e
tion without spoiling the images

of deeper re
e
tors. Although the 
hosen velo
ity model may appear 
lose to

a solution, it is not.

Migrating for signal enhan
ement

After presta
k depth migration, a 
ube of unsta
ked re
e
tion seismi
 data


an be
ome 
onsiderably easier to interpret and pi
k. Migration improves

signal-to-noise ratios by averaging random noise over midpoint. Migration also

simpli�es re
e
tions from stru
ture with high 
urvature (parti
ularly di�ra
-

tions), redu
es overlapping of events, and allows easier visual 
orrelation over

o�set.

Depth migration does not add information to observed re
e
tions, how-

ever. If anything, depth migration adds the bias of a parti
ular velo
ity model

that, good or bad, des
ribes only our previous assumptions. If the migration

and \true" velo
ities di�er by a shallow velo
ity anomaly, for example, then

migration will only di�use and weaken underlying re
e
tions.

If we 
hoose migration velo
ities only to improve the quality of pi
ks, then

we may prefer to initialize our velo
ity optimization with other models. First,

we must remove the bias of our migration velo
ities from the pi
ked migrated

depths, so far as possible. To do so, we re
onstru
t the presta
k traveltimes

that must have imaged at the pi
ked migrated depths.

Refle
tion times for tomography

To re
onstru
t presta
k traveltimes from the pi
ked migrated depths in �gure

3, we use geometri
 
onstant-o�set modeling: that is, �nd surfa
e midpoints

for re
e
tions from pi
ked re
e
tors with the proper lo
ations, angles, and

o�sets. The presta
k traveltimes (and their spatial derivatives) are given by

the estimated raypaths through the referen
e velo
ity model. See the appendix

for details.

Conventional methods of dynami
 ray shooting or relaxation suÆ
e for

this modeling step. Expli
it extrapolation and tabulation of traveltimes are

re
ommended for their simpli
ity and speed (Vidale, 1990; van Trier, 1990;

Moser, 1991; and Asakawa and Kawanaka, 1993).

Figure 4 shows the 
orresponding 
onstant-o�set time pi
ks modeled from
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the re
e
tors in �gure 3. These pi
ks should be equivalent to the presta
k

traveltimes and moveouts in the original unmigrated, unsta
ked data. We


an now pro
eed with a 
onventional re
e
tion traveltime tomography, as if

these pi
ks were our original data. The 
hosen method of re
e
tion traveltime

tomography will impli
itly en
ourage 
onsistent images of 
ommon-re
e
tion

points.

Des
ribing a velo
ity fun
tion

We parameterize the transmission slowness P (x) (re
ipro
al velo
ity) as a

smooth fun
tion of our spatial 
oordinates x. Basis fun
tions, splines, or

smoothed grids serve equally well. We require only that the 
ontinuous slow-

ness be a linear fun
tion of its parameters. The smoothness of the fun
tion

should also be adjustable so that resolution 
an be in
reased as an inversion

pro
eeds and as a

ura
y in
reases.

As a 
on
rete example, let dis
rete 
oeÆ
ients P

i

s
ale basis fun
tions g(x)


entered at points x

i

. The widths of these basis fun
tions are 
ontrolled by a

s
alar w.

P (x) �

X

i

P

i

w

�1

g[(x� x

i

)=w℄;

where

Z

g(x)dx = 1; and

Z

g(x) kxk

2

dx � 1: (1)

This basis fun
tion has a normalized area and width, so that the mag-

nitudes of P

i

and w are 
omparable to the slownesses and spatial resolution

respe
tively. Multidimensional Gaussians are 
onvenient. This 
ontinuous

slowness model is a linear fun
tion of the 
oeÆ
ients, a 
onvenient property

for optimization. The resolution of this model 
an be modi�ed dynami
ally

simply by adjusting the s
alar w.

Optimizing 
ommon-refle
tion points and velo
ities

An unoptimized slowness model will not allow a fan of modeled rays to share

a 
ommon-re
e
tion point and explain the measured traveltimes at all o�sets.

Dynami
 ray tra
ing, shooting, and relaxation 
an �nd re
e
tion paths that �t

multi-o�set re
e
tion times as well as possible. See the appendix for details.

We prefer the powerful 
ombination of expli
it traveltime extrapolation (e.g.

Vidale, 1990; van Trier, 1900; Moser, 1991) with Fermat's prin
iple to esti-

mate representative raypaths (Harlan, 1990). Spatial derivatives of measured

traveltimes 
onstrain the dips of re
e
tors.

Assume that we have identi�ed many di�erent 
ommon-re
e
tion points,

indexed by b. Ea
h point re
e
ts N

b

raypaths with measured traveltimes t

bh

at
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o�sets indexed by h. If estimated raypaths are written as a fun
tion of spatial

distan
e a, then modeled traveltimes are line integrals of slowness along the

paths:

T

bh

=

Z

a

bh

0

P [x

bh

(a)℄da: (2)

For 
onvenien
e, the raypath x

bh

(a) begins with a = 0 at a sour
e position,

in
reases along the raypath, through the re
e
tion point, and rea
hes the total

length a

bh

of the ray at the re
eiver lo
ation. This modeled traveltime is also

a linear fun
tion of the slownesses and of the parameters that des
ribe these

slownesses.

When raypaths do not in
lude re
e
tions, tomography iteratively linearizes

the modeling by holding raypaths 
onstant and 
onsidering only the e�e
t of

interval velo
ities on traveltimes. Be
ause of Fermat's prin
iple, perturba-

tions of raypaths do not a�e
t the traveltimes to �rst order. The position of

re
e
tions, however, does a�e
t traveltimes to �rst order. By requiring perfe
t

agreement with pi
ked times, we 
an measure the e�e
t of perturbing velo
ities

on re
e
tor positions.

In the vi
inity of a re
e
tion point, up- and down-going waves 
an be

approximated as plane waves. Assume that a re
e
tor has been displa
ed

perpendi
ular to its dip until the measured and modeled traveltimes (t

bh

and

T

bh

) of a raypath agree. If the up- and down-going rays meet at an angle

�

bh

, then the following error measures the e�e
t of su
h a displa
ement on the

zero-o�set (normal-in
iden
e) re
e
tion time:

e

bh

= (t

bh

� T

bh

)= 
os(�

bh

=2): (3)

See the appendix as well as Stork and Clayton (1992) for a justi�
ation of the


osine. Noti
e that this positioning error in
reases as the angle of re
e
tion

in
reases.

Sin
e the velo
ity model is imperfe
t, we know that our original positions

for re
e
tion points were in
orre
t. We do not want to dis
ourage a new

velo
ity model from moving the re
e
tion points, but we do want 
onsisten
y

from all o�sets that share a 
ommon-re
e
tion point.

A revised velo
ity model need not drive the positioning errors (3) to zero

but should make the errors depend on the re
e
tion point b alone. We want

to �nd the slowness model that minimizes the varian
e of these errors over

o�set:

min

P

i

=

X

b

X

h

(e

bh

�

1

N

b

X

h

0

e

bh

0

)

2

: (4)

Analogously, presta
k depth migration must 
reate 
onsistent images from

di�erent o�sets, without 
onstraining the depth of re
e
tors. This quadrati
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fun
tion of slowness lends itself to least-squares methods like 
onjugate gradi-

ents or singular-value de
omposition.

Figure 5 shows estimated transmission velo
ities and re
e
tion geometries.

These estimated depths vary mu
h less over o�set than do the original pi
ks in

�gure 3. Pi
ks are dis
arded if the range of o�sets is inadequate to 
onstraint

a parti
ular re
e
tion point. (Single o�sets and nearly identi
al o�sets do not

harm the optimization, but do not help either.) Figure 6 shows the subtra
tion

of the original velo
ities in �gure 2 from the estimated velo
ities in �gure 5. A

single re
e
tor lo
ation is able to �t modeled traveltimes to within a quarter

wavelength. Note that velo
ity in
reases near the bottom of the 
halk, then

de
reases again below. Well logs in the area show similar 
hanges in 
halk

velo
ities.

Figure 7 shows a remigration of the data with revised velo
ities. This time,

the re
e
tion at the bottom of the 
halk appears very strong and 
oherent, as

it does before sta
k. The 
ommon-image point gathers in �gure 8 show greater


onsisten
y over o�set. Although a few shallower re
e
tions seem slightly less


oherent before sta
k, the residual in
onsisten
ies are distributed mu
h more

evenly.

No further iteration was ne
essary. If substantial in
onsisten
ies had re-

mained over o�set, then repi
king would not have helped unless new re
e
tions

be
ame visible before sta
k. In this 
ase, revised velo
ities a�e
ted only the

migrated depths of re
e
tors before sta
k, not their 
oheren
e or strength.

Re
ommendations

The example in this paper was 
hosen to demonstrate the equivalen
e of depth

migration velo
ity analysis and re
e
tion tomography. Most of our appli
a-

tions of re
e
tion tomography begin with densely pi
ked sta
king fun
tions

that best des
ribe the unmigrated presta
k moveouts of re
e
tions over o�set.

The following guidelines are appropriate:

1. To avoid time-
onsuming hand optimization of presta
k depth migration

velo
ities, use tomographi
 velo
ity estimations whenever possible.

2. Use post-migration pi
ks when unmigrated data are too noisy for presta
k

interpretation, or when 
omplex stru
ture overlaps 
onsiderably in time.

3. Use post-migration pi
ks to improve an already existing interval velo
ity

model that requires some minor improvement.

4. Use unmigrated presta
k traveltimes to estimate an interval velo
ity

model from s
rat
h, when data quality allows.

5. Pi
k data prior to migration when shallow lateral velo
ity anomalies are

likely. (Migration will destroy eviden
e of \time sags.")
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6. When densely pi
ked \sta
king velo
ities" are available (twenty per 
a-

blelength), tomographi
ally estimate an interval velo
ity routinely for

depth migration or 
onversion.

Con
lusions

Already existing tools for re
e
tion traveltime tomography are easily adapted

to presta
k migrated data. Migration eases pi
king by improving signal-to-

noise ratios and by simplifying the appearan
e of re
e
tions. Those interested

only in migrated images will bene�t from using a more general algorithm,


apable of in
orporating traveltime information from other sour
es. When the

initial velo
ity model is poor, some re
e
tions may be easier to pi
k without

migration. Post-migration pi
ks 
an be 
onverted and 
ombined with pre-

migration pi
ks, and even with pi
ks from \sta
king velo
ity" analyses. One

tomographi
 algorithm 
an serve for many varieties of data.

No repi
king of data appears to be ne
essary, ex
ept to eliminate multi-

ples, 
y
le skipping, and other mistakes. Traveltime tomography is suÆ
iently

iterative to allow for the non-linearities of ray-bending, 
onstrained velo
ities,

and so on. If tomographi
ally estimated velo
ities and re
e
tors do not �t the

pi
ked data, then the pi
ks may not be 
onsistent with the physi
al assump-

tions. Tomography provides the best estimate of migrated depths from surfa
e

information alone. Fo
using analysis 
an remove any remaining unexplained

in
onsisten
ies. Tools also exist for interpretive modi�
ation of the best to-

mographi
 model, parti
ularly to add or adjust sharp velo
ity 
ontrasts, su
h

as salt interfa
es.

Identifying 
ommon-re
e
tion points improves the robustness and 
onver-

gen
e of estimated interval velo
ities. Errors in modeled traveltimes 
an be


onverted into equivalent displa
ements of the re
e
tion point for ea
h ray-

path. An optimum velo
ity model en
ourages these displa
ements to be as


onsistent as possible, without attempting to preserve the original positions.
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 details with a notation 
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k depth migrations trans-

form data with a summation (\Kir
hho�") formulation. Then we relate the

e�e
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oherent re
e
tions to the raypath approximations used

by traveltime tomography. Pi
ks of 
onstant-o�set migrated depths are used

to �nd equivalent pi
ked presta
k re
e
tion times, and vi
e-versa. Finally,

we examine how perturbations of re
e
tor lo
ations a�e
t the modeled travel-

times, so that tomography 
an simultaneously optimize re
e
tion points and

interval velo
ities.

Presta
k depth migration

Seismi
 amplitudes u(t;x

s

;x

r

) (displa
ement or pressure) are re
orded as a

fun
tion of time t at the surfa
e sour
e and re
eiver positions indexed by s

and r. The Cartesian elements of a 
oordinate ve
tor x are (x; y; z), where z

in
reases with depth. For ea
h surfa
e sour
e or re
eiver position (x

s

or x

r

)

we extrapolate a table of traveltimes T (x;x

s

) to many buried positions x.

Traveltimes are understood to satisfy an Eikonal equation. The gradient of

traveltime has a magnitude equal to re
ipro
al velo
ity, or slowness:

1=v(x) �








r

x

T [x;x

0

℄








 (5)

The Eikonal equation is a

ompanied by transport equations, whi
h spe
ify

the geometri
 
hanges in amplitude R(x;x

s

). The arguments of T and R

both 
an be reversed symmetri
ally (a result of re
ipro
ity). Single-valued

fun
tions su
h as these do not allow 
austi
s or multiple arrivals. By making

the slowness and velo
ity independent of x

0

we also assume isotropy.

The data are assumed to be a linear fun
tion of the migrated image
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u(t;x

s

;x

r

) =

Z

dx m(x) Æ[t� T (x;x

s

)� T (x;x

r

)℄ R(x;x

s

) R(x;x

r

) gain(t):

(6)

The re
orded data are usually s
aled by an in
reasing fun
tion of time, su
h

as gain(t) = t

2

, to redu
e the dynami
 range. Intentionally, this gain 
an
els

some of the s
aling by geometri
 fa
tors.

A generalized inverse of this linear equation would be preferable, but for eÆ-


ien
y, a modi�ed adjoint operation gives an approximate inverse. This sum-

mation method is often 
alled a \Kir
hho�" method although it need not use

the integral and approximation by that name. The image lo
ations will be

indexed by b.

m̂(x

b

) =

X

s;r

Z

dt _u(t;x

s

;x

r

) Æ[t�T (x

b

;x

s

)�T (x

b

;x

r

)℄R(x

b

;x

s

)R(x

b

;x

r

) gain(t):

(7)

The summation is over re
orded sour
e and re
eiver positions. A time di�er-

entiation of the data (a \rho" �lter) partially 
orre
ts the phase distortion of

the model.

For our purposes, a partial migration will be more useful. We �nd it useful to

perform the summation over the midpoint 
oordinate x




� (x

r

+ x

s

)=2 rather

than sour
e position. An image at a 
onstant \half o�set" x

h

� (x

r

� x

s

)=2

restri
ts the summation to sour
e and re
eivers with a 
onstant separation:

m̂

h

(x

b

) =

X




Z

dt _u(t;x




� x

h

;x




+ x

h

) Æ[t� T (x

b

;x




� x

h

)� T (x

b

;x




+ x

h

)℄ �

� R(x

b

;x




� x

h

) R(x

b

;x




+ x

h

) gain(t): (8)

Similarly, we 
an remodel data with di�erent versions of the 
onstant o�set

migrations:

û(t;x




� x

h

;x




+ x

h

) =

X

b

m̂

h

(x

b

) Æ[t� T (x

b

;x




� x

h

)� T (x

b

;x




+ x

h

)℄ �

� R(x

b

;x




� x

h

) R(x

b

;x




+ x

h

) gain(t): (9)

When the traveltime table is 
onsistent with the data, the 
onstant-o�set

images m̂

h

(x

b

) should not show 
hanges in phase over di�erent o�sets x

h

. For

geometri
 dis
ussions of phase delays, we 
an ignore the smoothly varying gain

and geometri
 s
ale fa
tors.

Re
onstru
ting raypaths from traveltimes

Usually, one 
onstru
ts a traveltime table T from a parti
ular velo
ity model.

To study the properties of the transforms (6) through (9), we will �nd it useful
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to take the traveltime table as given and dedu
e other properties from it. We

will then �nd it easier to improve the velo
ity model and traveltime table.

De�ne a slowness ve
tor p by treating the traveltime table T as a s
alar po-

tential �eld:

p[x;x

0

℄ �r

x

T [x;x

0

℄ (10)

and

T [x;x

0

℄ =

Z

x

x

0

p[x

00

;x

0

℄ � dx

00

; (11)

where the line integral 
an follow any path. By 
onstru
tion, the ve
tor slow-

ness is irrotational (waves should not travel in a loop): r� p = 0.

The magnitude of the slowness ve
tor is the slowness P , the re
ipro
al of the

lo
al velo
ity|a restatement of the Eikonal equation:

P (x) �








p[x;x

0

℄








 (12)

To derive traveltimes tables from lo
al slownesses, we need 
onstants of inte-

gration. We 
an extrapolate a unique traveltime table T from P if traveltimes

are spe
i�ed on a point, 
urve, or surfa
e, and if traveltimes satisfy Lapla
e's

equation r

2

T = 0 elsewhere (sour
eless). Unfortunately, 
austi
s of 
ross-

ing slowness ve
tors easily form during extrapolation, produ
ing multivalued

traveltimes. In pra
ti
e, single-valued extrapolations sele
t either minimum

traveltimes or those with the strongest geometri
 s
ale fa
tors.

Let a raypath x(a) be parameterized as a fun
tion of spatial distan
e a, so

that kdx(a)=dak � 1. The raypath should also be be tangent to any slowness

ve
tor that originates from another point on the path:

d

da

x(a) � p[x(a);x(a

0

)℄=P [x(a)℄: (13)

Thus,

T [x(a);x(a

0

)℄ =

Z

a

a

0

da

0

d

da

0

T [x(a

0

);x(a

0

)℄

=

Z

a

a

0

da

0

rT [x(a

0

);x(a

0

)℄ �

d

da

0

x(a

0

)

=

Z

a

a

0

da

0








p[x(a

0

);x(a

0

)℄



















d

da

0

x(a

0

)










=

Z

a

a

0

da

0

P [x(a

0

)℄ (14)

We have the 
onventional result that the traveltime is the integration of slow-

ness along a raypath.
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The raypath was de�ned as tangent to the slowness ve
tor, but we 
ould make

the equivalent assumption that the �nal integral in equation (14) is stationary

with respe
t to the raypath x (minimum traveltime). The 
al
ulus of variations

allows us to reverse the derivation.

To extrapolate a raypath from a point x(a

0

) in a known dire
tion p(a

0

), we


an use equation (13) and the following, whi
h derives from (13) and (12):

d

da

p[x(a);x(a

0

)℄ =r

x

P [x(a)℄: (15)

This equation des
ribes how a ray is bent by lo
al 
hanges in slowness (Snell's

Law). Dynami
 ray tra
ing uses �nite di�eren
es to extrapolate the ray di�er-

ential equations, (13) and (15). Other methods in
lude shooting, relaxation,

and the re
ipro
ity method (whi
h we use), des
ribed in Harlan (1990) and

Matsuoka and Ezaka (1992).

Residual geometri
 modeling and migration

After performing the 
onstant o�set migration in (8), we identify the same


ontinuous re
e
tor at several 
onstant o�sets. We pi
k the migrated positions

of this re
e
tor x

bh

= [x

b

; y

b

; z

bh

℄ at a �xed lateral position (x

b

; y

b

) and allow

the depth z

bh

to 
hange with o�set index h. Ea
h 
oherent pi
k is indexed

by b. Let us also pi
k the lo
al dip with a ve
tor q

bh

that is normal to the

migrated re
e
tor. For 
onvenien
e, assume a unit magnitude: kq

bh

k � 1.

Lo
ally, the 
oheren
e of this re
e
tion 
ould be approximated to �rst order

as a planar surfa
e:

m̂

h

(x

b

) � f [(x

b

� x

bh

) � q

bh

℄ (16)

where f(�) is a simple wavelet des
ribing the lo
al 
oheren
e perpendi
ular to

the surfa
e.

All our pi
ked data, su
h as found in �gure 3, will be summarized as a list

of fx

bh

, q

bh

g, for many b and h. Migrated re
e
tors need only be 
ontinuous

enough over x

b

to allow the pi
king of a lo
al dip. What 
oheren
e in the

original unmigrated data would have produ
ed these pi
ks? Can we derive a

set of equivalent unmigrated traveltime pi
ks?

We will �nd it easiest to answer these questions by seeing how equation (9)

remodels the data. The migrated re
e
tion point x

bh


ontributes to all sour
e

and re
eiver pairs with �xed \half o�sets" x

h

= (x

r

�x

s

)=2. For ea
h a�e
ted

midpoint x




= (x

r

+x

s

)=2, we 
an draw a raypath from the sour
e and re
eiver

to the re
e
tion point. The two rays rea
h the re
e
tion point with known

slowness ve
tor dire
tions p(x

bh

;x




+ x

h

) and p(x

bh

;x




� x

h

).

By looking for a stationary phase in the 
onstant-o�set modeling integral (9)

with the approximation (16), we �nd this re
e
tion point 
ontributes most to

the midpoint whi
h maximizes
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max

x











[p(x

bh

;x




� x

h

) + p(x

bh

;x




+ x

h

)℄ � q

bh








 (17)

In other words, the rays should re
e
t symmetri
ally about the normal to the

re
e
tor. Compare this argument to that of Liu and Bleistein (1995). When

this dot produ
t is maximized we �nd that

p(x

bh

;x




� x

h

) + p(x

bh

;x




+ x

h

) = 2 P (x

bh

) 
os(�


bh

=2) q

bh

;

where 
os(�


bh

) � [p(x

bh

;x




� x

h

) � p(x

bh

;x




+ x

h

)℄=P (x

bh

)

2

: (18)

�


bh

gives the angle between the two raypaths as they meet at the re
e
tion

point.

The total traveltime of a re
e
tion is given by

t


h

(x

bh

) = T (x

bh

;x




� x

h

) + T (x

bh

;x




+ x

h

): (19)

We see how to re
onstru
t raypaths, traveltimes, and surfa
e positions from

pi
ks of migrated re
e
tors. For 
ompleteness, we outline how to reverse this

pro
edure.

Let us de�ne an equivalent set of traveltime pi
ks from the original unmigrated

data. For ea
h o�set x

h

and midpoint x




we pi
k a traveltime t


h

. A

ording

to the migration equation (8), this pi
k a�e
ts all migrated positions x

bh

along

the ar
 des
ribed by equation (19). To determine whi
h of these midpoints


ontribute most, we require more information.

We 
an also pi
k a dip of traveltime with respe
t to midpoint p


h

= r

x




t


h

where r

x




� (r

x

s

+r

x

r

)=2. We assume a 
orresponding 
oheren
e in the

data and look for stationary phase in equation (8). The position along the ar


in (19) that 
ontributes most to the pi
ked re
e
tion maximizes

max

x

bh








[p(x




� x

h

;x

bh

) + p(x




+ x

h

;x

bh

)℄ � p


h








 (20)

Thus, a 
onstant-o�set time pi
k ft


h

;p


h

g or migrated pi
k fx

bh

;q

bh

g are in-

ter
hangeable, and 
an be used to derive ea
h other and 
onstru
t the same set

of raypaths. To distinguish traveltimes that are re
onstru
ted from migrated

pi
ks, we use the index t

bh

in equation (3) in the main text to abbreviate

t


h

(x

bh

). The stationary phase approximations make the same high frequen
y

assumptions as the Eikonal and ray equations, and all fail in similar situations.

Converting time errors to re
e
tor errors

A perturbation of the re
e
tion point will perturb the re
e
tion traveltime

(19) a

ording to

�t


h

(x

bh

) � t


h

(x

bh

+�x

bh

)� t


h

(x

bh

) = 2P (x

bh

) 
os(�


bh

=2)q

bh

��x

bh

: (21)
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Only a perturbation perpendi
ular to the re
e
tor will a�e
t the traveltime.

We have e�e
tively assumed that the wavefront is planar in the vi
inity of the

re
e
tion point.

Traditionally, tomography minimizes errors between modeled and measured

traveltimes. Instead, we 
an 
onvert traveltime errors into equivalent errors in

re
e
tor positions:

�
^
x


bh

=

�t


h

(x

bh

)

2P (x

bh

) 
os(�


bh

=2)

q

bh

: (22)

More 
onveniently still, we 
an measure these errors in re
e
tor positions by

the 
hange in traveltime of a normal re
e
tion:

e


bh

�

�t


h

(x

bh

)


os(�


bh

=2)

: (23)

As we optimize the slowness model, we do not wish to minimize these errors

in re
e
tor positions absolutely be
ause we do not know the 
orre
t absolute

lo
ation. Rather we wish the lo
ations to be 
onsistent over o�set, with a

minimum varian
e in position errors, as in equation (4).
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FIGURES

FIG. 1. Presta
k depth migration of Netherlands North Sea data with a sim-

ple strati�ed velo
ity model. Shotpoint units index the lo
ations of seismi


sour
es, whi
h are spa
ed at 22.5 m.

FIG. 2. Common-image-point gathers. Constant-o�set migrated images were

sorted over o�set at sele
ted 
ommon-midpoint lo
ations. Note in
onsistent

imaging of re
e
tor at position 400 and 2750 m depth.

FIG. 3. A simple strati�ed velo
ity model with pi
ked 
onstant-o�set migrated

depths. At least �ve o�sets were pi
ked for ea
h re
e
tion, in
luding a near

o�set of 154 m (distan
e between sour
e and re
eiver). The maximum pi
kable

o�set in
reased from 1300 m at 800 m depth to 3575 m at 4800 m depth. Note

the in
onsisten
y of depths at di�erent o�sets for the re
e
tion near 2300 m

depth.

FIG. 4. A re
onstru
tion of 
onstant-o�set traveltimes from the 
onstant-

o�set pi
ks and velo
ities in �gure 3. These are suÆ
ient data for traveltime

tomography.

FIG. 5. An iteratively optimized model for the interval velo
ities and migrated

re
e
tion depths. The 
onsisten
y of re
e
tors over o�set has improved.

FIG. 6. A subtra
tion of the original velo
ity model in �gure 3 from the �nal

estimated velo
ity model in �gure 5. Note that the velo
ity has in
reased

above 2500 m depth and de
reased below.

FIG. 7. A revised presta
k depth migration with the optimized interval velo
-

ity model in �gure 5. The previously weak re
e
tor near 2500 m depth is now

very strong. (Lo
al gain weakens some neighboring re
e
tors.)

FIG. 8. Revised 
ommon-image point gathers. Errors in residual moveout are

mu
h better distributed.


