
An implementation of generalized inversion

William S. Harlan

Landmark Graphi
s; 1805 Shea Center Drive

Highlands Ran
h, CO 80129, USA

Mar
h 2004

Introdu
tion

In my geophysi
al work, I rely heavily upon a generalized inversion algorithm

alled Gauss-Newton optimization. The Gauss-Newton method minimizes ob-

je
tive fun
tions that
an be iteratively approximated by quadrati
s. This

approa
h is parti
ularly appropriate for least-squares inversions of moderately

non-linear transforms. The pa
kage also
ontains
ode for
onjugate-gradient

and line-sear
h optimizations.

Over two de
ades I have implemented this pa
kage four times, in four di�er-

ent programming languages. Every feature of this pa
kage has been motivated

by pra
ti
al appli
ation. This parti
ular Java version is only a few years old,

but I have already used it for a dozen or more distin
t inversion problems. I

�nd no preexisting pa
kage so suitable for typi
al geophysi
al inversion prob-

lems.

The abstra
tion is designed to minimize the burden of supporting new

models, data, and transforms. Unlike many approa
hes, we will not be re-

quired to
onstru
t and invert large linear matri
es. We only need to be able

to perform transformations on spe
i�
 models and datasets. The inversion

algorithm need not know any of the implementation details of those models

and transformations.

For ea
h new problem, I must implement two distin
t Java interfa
es. The

data and model are en
apsulated by two implementations of the Ve
t interfa
e.

The simulation to be inverted must be en
apsulated by Transform if non-

linear, or by LinearTransform if linear. Any
onstraints or
onditioning
an

be implemented with one of these interfa
es. Finally, the model that best

explains a parti
ular dataset is inverted by the GaussNewtonSolver.solve

method if non-linear, and by Quadrati
Solver.solve if linear.

1

An implementation of generalized inversion | W.S. Harlan 2

Model and data as abstra
t ve
tors

Our optimization algorithm will be de�ned only in terms of general ve
tor

spa
es and operators on ve
tors. Our abstra
tions of model and data must

�rst support these operations. Noti
e that this use of the word ve
tor is

not limited to one-dimensional arrays. See Luenberger's [5℄ \Optimization by

Ve
tor Spa
e Methods."

Let us write a spe
i�
 dataset as a ve
tor d and a model as a ve
tor

m. Ea
h of these ve
tors belong to a separate ve
tor spa
e, with di�erent

dimensionality, norms, and implementations. Both must support the same

ve
tor operations.

First, a ve
tor
an be s
aled by a
onstant and added to another ve
tor, to

produ
e another valid ve
tor. I.e, if m

1

and m

2

are two separate models, and

� and � are s
ale fa
tors, then �m

1

+�m

2

is also a model ve
tor. This ve
tor

s
aling and addition must be
ommutative, asso
iative, and distributive. Here

is the method that must be de�ned by the Java interfa
e for an abstra
t ve
tor.

publi
 interfa
e Ve
t extends Ve
tConst {

/** Add a s
aled version of another ve
tor to a s
aled version of this

ve
tor.

�param s
aleThis Multiply this ve
tor by this s
alar before adding.

�param s
aleOther Multiply other ve
tor by this s
alar before adding.

�param other The other ve
tor to be multiplied.

*/

publi
 void add(double s
aleThis, double s
aleOther, Ve
tConst other) ;

...

}

We
ould have de�ned methods to s
ale and add separately, but this method

o�ered the best
ompromise between eÆ
ien
y and simpli
ity. Your imple-

mentation
an optimize spe
ial
ases where a s
ale fa
tor is 0 or 1.

Ve
tConst is an interfa
e that supports only immutable operations. Ve
t

extends Ve
tConst and add methods that modify the state of the ve
tor.

Next we de�ne a dot produ
t (or inner produ
t) for a normed ve
tor spa
e.

In ve
tor notation, any two ve
tors from the same spa
e
an be dotted to

produ
e a s
alar: m

1

�m

2

. This dot produ
t is usually a simple Cartesian dot

produ
t of all internal parameters. Any non-Cartesian distan
es are separated

into a separate \inverse
ovarian
e" operator. The magnitude or norm of a

ve
tor is given by kmk

2

�m �C

~

�1

m

�m The signi�
an
e of this
ovarian
e will

be
learer on
e we de�ne an obje
tive fun
tion.

Here are the appropriate Java operations:

publi
 interfa
e Ve
tConst extends Cloneable, java.io.Serializable {

/** Return the Cartesian dot produ
t of this ve
tor with another

ve
tor (not in
luding any inverse
ovarian
e).

�param other The ve
tor to be dotted.

An implementation of generalized inversion | W.S. Harlan 3

�return The dot produ
t.

*/

publi
 double dot(Ve
tConst other);

/** This is the dot produ
t of the ve
tor with itself premultiplied

by the inverse
ovarian
e. Equivalently,

Ve
t ve
t = (Ve
t) this.
lone();

ve
t.multiplyInverseCovarian
e();

return this.dot(ve
t);

*/

publi
 double magnitude() ;

...

}

publi
 interfa
e Ve
t extends Ve
tConst {

...

/** Optionally multiply a ve
tor by the inverse
ovarian
e matrix.

Also
alled pre
onditioning.

A method that does nothing is equivalent to an identity.

*/

publi
 void multiplyInverseCovarian
e();

...

}

Noti
e that all Ve
tConst extends Cloneable and Serializable. Copies will

frequently be ne
essary. The optimization will minimize the number of ve
tors

instantiated simultaneously, to redu
e memory requirements, even if it requires

repeating some less expensive operations.

The Ve
tConst.magnitude() method is redundant, but it is ne
essary to

avoid
reating extra
opies of the model. If your ve
tors are small, you
an

use a simple implementation with a
lone, as shown in the
omment.

Serializable is not stri
tly ne
essary, but often highly desirable with
re-

ating
olle
tions of ve
tors. For example, you
an use the wrapper
lass

Ve
tCa
he to
reate a
olle
tion of Ve
t's that are
a
hed to disk. Ve
tCa
he

is itself a Ve
t. You may also want to implement a transform that distributes

work to other nodes. If neither of these situations are the
ase, you need not

override the default serialization.

Use the stati
 method Ve
tUtil.test(Ve
tConst ve
t) to test your im-

plementation of all these methods.

We have now
overed all mandatory operations required for our generalized

inversion. Some optional operations su
h as hard
onstraints and
onditioning

are also supported and will be dis
ussed later.

Abstra
tion of non-linear simulation

Next we need an abstra
tion of the
al
ulations that simulate our data from a

parti
ular model. The inversion algorithm is not interested in implementation

An implementation of generalized inversion | W.S. Harlan 4

details, but only in the appli
ation of the transform. If our data are en
apsu-

lated as a ve
tor d and our model as m, then we
an write our simulation as

d = f(m).

With just a forward transform (simulation), no inversion
ould eÆ
iently

estimate the model that best explains a parti
ular dataset. The inversion

would only be able to try di�erent random models and
ompare the results,

without any suggestion on how best to modify the model. Our abstra
tion of

a transform requires two more operations.

First, we must know how a small perturbation of a model a�e
ts the data.

If we add a small perturbation �m to a referen
e model m

0

, then we would

like to know the resulting perturbation to the data �d. We must be able to

implement a linear transform F

~

(m

0

) so that

�d = F

~

(m

0

) ��m � f(m

0

+�m)� f(m

0

): (1)

The operator F

~

(m

0

) is linear if the following equality holds

F

~

(m

0

) � (��m

1

+ ��m

2

) � � F

~

(m

0

) ��m

1

+ � F

~

(m

0

) ��m

2

(2)

for all �; �;�m

1

; and �m

2

:

I always attempt to parameterize my model so that this linearization is as

good as possible. The better the linearization, the better the
onvergen
e.

Finally, we will need a transpose F

~

T

(m

0

) of the linear transform. A trans-

pose is de�ned by the equality

�d � [F

~

(m

0

) ��m℄ � [F

~

T

(m

0

) ��d℄ ��m for all �d and �m: (3)

The transpose is known as \ba
k-proje
tion" in tomography and as \ba
k-

propagation" in neural networks.

In addition to ve
tors for the data and model, our generi
 inversion will

require us to implement an interfa
e for this transform. In Java, the three

essential operations look like

publi
 interfa
e Transform {

/** Non-linear transform: data = f(model).

�param data Output. Initial values are ignored.

�param model Input. Un
hanged.

*/

publi
 void forwardNonlinear(Ve
t data, Ve
tConst model);

/** A linearized approximation of the forward transform

for a small perturbation (model) to a referen
e model (modelReferen
e).

The output data must be a linear fun
tion of the model perturbation.

Linearized transform:

data = F model ~= f(model + modelReferen
e) - f(modelReferen
e)

An implementation of generalized inversion | W.S. Harlan 5

�param data Output. Initial values are ignored.

�param model Perturbation to referen
e model.

�param modelReferen
e The referen
e model for the linearized operator.

*/

publi
 void forwardLinearized(Ve
t data, Ve
tConst model,

Ve
tConst modelReferen
e);

/** The transpose of the linearized approximation of the forward transform

for a small perturbation (model) to a referen
e model (modelReferen
e):

model = F' data. Add the result to the existing model.

�param data Input for transpose operation.

�param model Output. The transpose will be added to this ve
tor.

�param modelReferen
e The referen
e model for the linearized operator.

*/

publi
 void addTranspose(Ve
tConst data, Ve
t model,

Ve
tConst modelReferen
e);

...

}

In addition, there is an optional inverse Hessian method that
an be used to

speed
onvergen
e. We will dis
uss this method later.

Use the stati
 method Ve
tUtil.getTransposePre
ision to ensure that

your transpose satis�es the dot-produ
t de�nition.

We now have all the properties required for a generalized inversion of a

transform to obtain a model ve
tor that best explains a data ve
tor.

A damped least-squared obje
tive fun
tion

The damped least squares obje
tive fun
tion behaves well for geophysi
al prob-

lems that are both over-determined and under-determined. When over-deter-

mined, errors in data will be distributed as uniformly as possible. When

under-determined,
omponents of the model will be suppressed if they do not

improve the �t with data signi�
antly. For motivation of damped least squares

as a sto
hasti
 optimization see Menke [7℄, Jaynes [4℄, or Box and Tiao [1℄.

We assume that our data d are a non-linear fun
tion f(m) of our modelm.

The noise ve
tor n will be any
omponent of our data that we
annot explain:

d = f(m) + n: (4)

Assume the noise n and model m are sampled from separate Gaussian dis-

tributions. The model that best explains a spe
i�
 dataset is the one that

minimizes this obje
tive fun
tion.

min

m

f[d� f(m)℄ �C

~

�1

n

� [d� f(m)℄ +m �C

~

�1

m

�mg: (5)

The
ovarian
e matri
es des
ribe expe
ted
orrelations between ea
h Gaussian

parameter in a ve
tor. (Assume without loss of generality that the mean of

the model and noise are zero. We
an adjust our transform a

ordingly.)

An implementation of generalized inversion | W.S. Harlan 6

This obje
tive fun
tion will be easier to optimize if
ovarian
es are as diag-

onal as possible. I dis
uss su
h manipulation of the quadrati
 obje
tive fun
-

tion in the paper \Regularization by Model Parameterization" [3℄. I strongly

re
ommend you examine this paper as well.

You need only damp the magnitude of the model slightly to assure a sta-

ble inverse. If your noise and model samples are
ompletely stationary and

independent, your Ve
t.multiplyInverseCovarian
e() methods need only

multiply by a s
alar. I �rst anti
ipate reasonable physi
al magnitudes for the

noise and for the model. If both noise and model attain their most reasonable

values, then the two squared penalty terms should be equal in the obje
tive

fun
tion (5). Instead I adjust
ovarian
es so that model parameters
an attain

magnitudes 10 or 100 times their most reasonable values before the two terms

are equal. This minimal damping is suÆ
ient to guarantee a stable inverse

without distorting the solution unne
essarily. (Note that both
ovarian
es
an

be multiplied by the same arbitrary s
ale fa
tor without a�e
ting the �nal

solution.)

A Gauss-Newton algorithm iteratively approximates the obje
tive fun
tion

as a quadrati
 fun
tion of a perturbation of the model:

min

�m

[d� f(m

0

)� F

~

(m

0

) ��m℄ �C

~

�1

n

� [d� f(m

0

)� F

~

(m

0

) ��m℄

+(m

0

+�m) �C

~

�1

m

� (m

0

+�m): (6)

To minimize a
ompletely quadrati
 obje
tive fun
tion, we
an use the well-

understood
onjugate-gradient algorithm (see Gill et al [2℄ or Luenberger [6℄).

The best perturbation of the model �m is is a
tually a linear fun
tion of the

remaining error in the data d� f(m

0

).

We might be tempted simply to add the perturbation �m to the referen
e

model m

0

, but non-linearity in the transform
an
ause divergen
e. Instead

the algorithm solves for a single s
ale fa
tor � to multiply the perturbation

�m before addition.

min

�

[d� f(m

0

+ ��m)℄ �C

~

�1

n

� [d� f(m

0

+ ��m)℄

+(m

0

+ ��m) �C

~

�1

m

� (m

0

+ ��m): (7)

Often in geophysi
al problems, the original obje
tive fun
tion (5) has less

urvature than the quadrati
 approximation. In su
h a
ase, the estimated

s
ale fa
tor �
an be expe
ted to be less than one.

To sear
h for a single s
alar in a known range, the line-sear
h algorithm

(S
alarSolver) minimizes the number of evaluations of the original obje
tive

fun
tion. I use a line-sear
h that sear
hes for a paraboli
 minimumwith hyper-

linear
onvergen
e. If
onvergen
e is poor be
ause of strong non-linearity, the

sear
h resorts to a golden se
tion with at least linear
onvergen
e.

An implementation of generalized inversion | W.S. Harlan 7

Constraints and
onditioning

The Ve
t and Transform interfa
es in
lude some optional methods to apply

onstraints and to improve
onvergen
e.

Often our nonlinearity is due entirely to hard
onstraints upon our model.

For example, seismi
 velo
ities may be
onstrained to a stri
t range of positive

values.

We also often have a partial inverse of our forward transform, perhaps

from an analyti
 derivation that assumes our data are more evenly sampled.

Or we may know that a forward and transpose operation ampli�es
ertain

omponents of the data. We should be able to use su
h information to improve

onvergen
e.

If you have a simple hard
onstraint, su
h as an inequality, de�ne it in the

method Ve
t.
onstrain(). An empty implementation does nothing. This

method does not a�e
t the
onjugate-gradient optimization of the quadrati

approximation. Instead this method is applied after adding a perturbation to

the referen
e model. The method is
alled repeatedly during the line sear
h

for a best s
ale fa
tor for the perturbation.

You may instead wish to limit the degrees of freedom available to an update,

without similarly
onstraining your referen
e model. Your model and your

updates need not share the same implementations of the Ve
t interfa
e. You

need only
onvert from one to the other by implementing the Ve
t.proje
t

method, whi
h has the same arguments as the Ve
t.add method.

Most users of prepa
kaged inversions are familiar with \pre
onditioning"

as a method of improving
onvergen
e. Instead of attempting to invert a

transform like d = f(m), one inverts a related problem P

~

� d = P

~

� f(m). The

pre
onditioning transform P

~

ampli�es
omponents of the data that should be

inverted �rst. Unfortunately, solving this problem is not the same as solving

our original problem. Our �nal distribution of errors will be di�erent. We

have e�e
tively de�ned a new dataset and a new transform, whi
h of
ourse

we
an do at any time without help from the inversion
ode.

As I mentioned before, my favorite method of stabilizing and improving

onvergen
e is a reparameterization of the model [3℄. This approa
h simpli�es

and diagonalizes the model
ovarian
e operator.

Even after reparameterization, we may want to en
ourage
ertain parts

of the model to be updated �rst. We may know that our forward transform

has greater or lesser sensitivity to
ertain
omponents of our model. Both the

Ve
t and Transform interfa
es allow us to add \post-
onditioning" that takes

advantage of su
h knowledge.

The Ve
t interfa
e has an optional method Ve
t.postCondition(). If

you de�ne an empty implementation for this method, you will re
eive the

default behavior, whi
h should be �ne. For better
onvergen
e, this method

an apply a linear �lter to the data that enhan
es
omponents that should be

An implementation of generalized inversion | W.S. Harlan 8

optimized �rst, and suppresses
omponents of lesser importan
e. This is the

last operation applied to a model gradient before use in the
onjugate-gradient

algorithm. Your obje
tive fun
tion is not modi�ed, but your perturbations of

that model will improve. You should be able to obtain a better model in fewer

iterations.

Alternatively, you may have already have an approximate linear inverse for

the linearized forward transform. We
all this inverse the \inverse Hessian"

be
ause the Hessian is the tensor
urvature of the quadrati
 approximation.

You de�ne an approximate inverse Hessian by implementing the Transform

.multiplyInverseHessian() method. Leaving a default empty implementa-

tion is equivalent to assuming an identity.

For a given linearization F

~

(m

0

), the inverse Hessian G

~

(m

0

) should be the

partial inverse

G

~

(m

0

) � [F

~

T

(m

0

) � F

~

(m

0

)℄

�1

; or (8)

G

~

(m

0

) � [F

~

T

(m

0

) � F

~

(m

0

)℄ � I

~

: (9)

As long as the produ
t G

~

� F

~

T

� F

~

is more diagonal, or better balan
ed along

the diagonal, this inverse Hessian will improve
onvergen
e. In tomography

su
h a �lter is
alled \hit
ount balan
ing" and in slant-sta
ks a \rho �lter."

Again, this operator implies no
hange in the obje
tive fun
tion, just in the

way we perturb our solution.

One last optional operation is useful for very noisy data: Transform.adjust-

RobustErrors(Ve
t dataError). This operation does imply a
hange to our

obje
tive fun
tion, though a minor one. This method will be passed an esti-

mate of the errors in �tting the data | the original data minus the simulation

of the data with the best
urrent model. Your method may dete
t that a small

subset of your data has ex
eptionally large errors. Rather than allow a few bad

data to distort your result, your method
an
lip or s
ale ba
k these errors.

Do not
hange the overall varian
e of the errors more than ne
essary. (If you

are familiar with L1 optimization, you
an also use this method to divide all

errors by their previous magnitudes, to iteratively approximate a median �t

to your data.)

The Gauss Newton solver

Most everything unique about your inversion problem is des
ribed by your

implementation of the Ve
t and Transform interfa
es. For an inversion with

all features des
ribed previously, you should
all this stati
 method of Gauss-

NewtonSolver:

publi

lass GaussNewtonSolver {

publi
 stati
 Ve
t solve (Ve
tConst data,

An implementation of generalized inversion | W.S. Harlan 9

Ve
tConst referen
eModel,

Ve
tConst perturbModel, // optional

Transform transform,

boolean dampOnlyPerturbation,

int
onjugateGradIterations,

int lineSear
hIterations,

int linearizationIterations,

double lineSear
hError,

Monitor monitor) // optional

...

}

The return value of this method is the model that best explains an instan
e

of your data, passed as the �rst argument data.

The se
ond argument referen
eModel is the model that should be used

as the initial guess of your solution. Often you
an initialize this model to a

zero magnitude. The returned solution will be always be a revised instan
e of

this referen
e model.

If you want to perturb the referen
e model with an instan
e of a di�erent

lass, then provide a perturbModel. If perturbModel is null, then instan
es

of the referen
e model will be used for perturbations. The proje
t method of

the referen
e model should a

ept the perturbation as an argument. Perturba-

tions should have fewer degrees of freedom than the referen
e model, be
ause

proje
tion will lose any additional degrees of freedom. The initial state of this

ve
tor is ignored.

Your Transform should be able to model your data from the referen
e

model with forwardNonlinear, and should be able to use an instan
e of the

referen
e or perturbed model as perturbations in the forwardLinearized and

addTranspose methods.

If dampOnlyPerturbations is true, then the obje
tive fun
tion will only

minimize di�eren
es between your referen
e model and your new model. Oth-

erwise, the absolute Ve
t.magnitude() of your model will be minimized.

Remaining parameters let you
ontrol how mu
h
omputational e�ort you

are willing to expend on the solution.

Ea
h quadrati
 approximation should be minimized with at least a few

iterations of
onjugate-gradients. The parameter
onjugateGradIterations

should have a minimum of 3 iterations and a typi
al value of 4 or 5. If your

transform is relatively inexpensive, then indulge in a few more. Ea
h itera-

tion results in an additional evaluation of the linearized forward and transpose

transform. If this parameter has a value of 1, then your optimization will be

equivalent to non-linear steepest-des
ent, whi
h is notorious for poor
onver-

gen
e when the Hessian has a poorly balan
ed diagonal.

To s
ale the
onjugate-gradient perturbation, we must perform a line sear
h.

The parameter lineSear
hIterations
ontrols the maximum number of eval-

uations of the non-linear forward transform to be used for this sear
h. Be
ause

An implementation of generalized inversion | W.S. Harlan 10

of the hyper-linear
onvergen
e, you
an expe
t fairly good optimization of this

s
ale fa
tor with as few as 12 iterations. Typi
ally I prefer a safer value of 20,

beyond whi
h you are unlikely to see an improvement. If you spe
ify 0, then

you will get a default s
ale fa
tor of 1. Su
h a
hoi
e might
onverge well on

a transform that was almost entirely linear to begin with. A value of 1 might

be a good
hoi
e if the your only non-linearity results from hard
onstraints

on your model from the Ve
t.
onstrain() method.

The number of iterations a
tually used for the line sear
h depends on the

required pre
ision of the s
ale fa
tor. The parameter lineSear
hError is the

a

eptable fra
tional error in the estimated s
ale fa
tor. I typi
ally use a value

of 0.001 or smaller.

The parameter linearizationIterations
ontrols the outermost loop of

reapproximating the obje
tive fun
tion as a quadrati
. Ea
h of these itera-

tions multiplies the number of
onjugate-gradient and line sear
h evaluations

required. The number of quadrati
 approximations should be fairly small, un-

less your transform is strongly non-linear. I typi
ally
hoose a minimum value

of 3 unless I
an a�ord more.

If you wish to save the results of ea
h linearized iteration, then you
an

onstru
t your own loop: set linearizationIterations to 1 and use the

solution from ea
h iteration as the referen
e model for the next. Managing

your own outer loop will not in
rease the
omputational
ost signi�
antly.

To get a good feel for the diÆ
ulty of your problem, see if in
reasing the

number of iterations or pre
ision improves your solution signi�
antly.

To tra
k the progress of your inversion, you
an optionally pass a non-

null implementation of the Monitor interfa
e. This interfa
e de�nes a single

method publi
 void report(double fra
tion) whi
h will be
alled reg-

ularly with the
urrent fra
tion of work done. Values range from 0 at the

beginning to 1 when all work is done. To print the progress to a java Logger,

use the existing implementation in LogMonitor.

Simpler
onjugate-gradient and s
alar solvers

If your transform is entirely linear, you need only use a
onjugate-gradient

solver. You
an implement the simpler LinearTransform interfa
e that
on-

tains one instead of two forward transforms. Use this solver instead:

publi

lass Quadrati
Solver {

...

publi
 stati
 Ve
t solve (Ve
tConst data,

Ve
tConst referen
eModel,

LinearTransform linearTransform,

boolean dampOnlyPerturbation,

int
onjugateGradIterations,

Monitor monitor)

An implementation of generalized inversion | W.S. Harlan 11

...

}

All other parameters have the same meaning as before. No linearization or

line-sear
h is ne
essary, so the
orresponding parameters have disappeared.

The
onjugate-gradient algorithm itself is
ontained in the Quadrati
Sol-

ver
lass. To use this
lass dire
tly, you must
onstru
t the normal equations

of your least-squares problem, in
luding a Hessian operator. For inversion

problems, this form is mu
h less
onvenient than the Quadrati
Solver.solve

method above. But if your obje
tive fun
tion is already expressed as a simple

quadrati
, then you might want to use this lower-level
lass.

You might also have o

asion to estimate a single parameter that mini-

mizes some arbitrary fun
tion. You
an use the S
alarSolver
lass dire
tly

by implementing the single method in the S
alarSolver.Fun
tion interfa
e.

This is the same algorithm used internally by the Gauss-Newton algorithm for

the line-sear
h of a s
ale fa
tor.

Con
lusion

I have des
ribed all methods available in the interfa
es available for solving

a generalized least-squares inversion problem. Methods exist for testing the

internal
onsisten
y of your implementations. I think you will �nd a large

number of inversion problems
an be solved by this framework. When the

simulation is too non-linear for this framework, it is also likely to be diÆ
ult

for any framework to optimize well. You would be well advised to attempt a

reparameterization of your model.

Referen
es

[1℄ George E.P. Box and George C. Tiao. Bayesian Inferen
e in Statisti
al

Analysis. John Wiley and Sons, In
., 1973.

[2℄ Philip E. Gill, Walter Murray, and Margaret H. Wright. Pra
ti
al Opti-

mization. A
ademi
 Press, 1981.

[3℄ William S. Harlan. Regularization by model reparameterization. This

website: papers/regularization.pdf, 1995.

[4℄ E.T. Jaynes. Probability Theory: The Logi
 of S
ien
e. Cambridge Uni-

versity Press, 2003.

[5℄ David G. Luenberger. Optimization by Ve
tor Spa
e Methods. John Wiley

and Sons, In
., 1969.

An implementation of generalized inversion | W.S. Harlan 12

[6℄ David G. Luenberger. Introdu
tion to Linear and Nonlinear Programming.

Addison Wesley, 1973.

[7℄ WilliamMenke. Geophysi
al Data Analysis: Dis
rete Inverse Theory. A
a-

demi
 Press, In
., 1984.

