
An implementation of generalized inversion

William S. Harlan

Landmark Graphis; 1805 Shea Center Drive

Highlands Ranh, CO 80129, USA

Marh 2004

Introdution

In my geophysial work, I rely heavily upon a generalized inversion algorithm

alled Gauss-Newton optimization. The Gauss-Newton method minimizes ob-

jetive funtions that an be iteratively approximated by quadratis. This

approah is partiularly appropriate for least-squares inversions of moderately

non-linear transforms. The pakage also ontains ode for onjugate-gradient

and line-searh optimizations.

Over two deades I have implemented this pakage four times, in four di�er-

ent programming languages. Every feature of this pakage has been motivated

by pratial appliation. This partiular Java version is only a few years old,

but I have already used it for a dozen or more distint inversion problems. I

�nd no preexisting pakage so suitable for typial geophysial inversion prob-

lems.

The abstration is designed to minimize the burden of supporting new

models, data, and transforms. Unlike many approahes, we will not be re-

quired to onstrut and invert large linear matries. We only need to be able

to perform transformations on spei� models and datasets. The inversion

algorithm need not know any of the implementation details of those models

and transformations.

For eah new problem, I must implement two distint Java interfaes. The

data and model are enapsulated by two implementations of the Vet interfae.

The simulation to be inverted must be enapsulated by Transform if non-

linear, or by LinearTransform if linear. Any onstraints or onditioning an

be implemented with one of these interfaes. Finally, the model that best

explains a partiular dataset is inverted by the GaussNewtonSolver.solve

method if non-linear, and by QuadratiSolver.solve if linear.

1

An implementation of generalized inversion | W.S. Harlan 2

Model and data as abstrat vetors

Our optimization algorithm will be de�ned only in terms of general vetor

spaes and operators on vetors. Our abstrations of model and data must

�rst support these operations. Notie that this use of the word vetor is

not limited to one-dimensional arrays. See Luenberger's [5℄ \Optimization by

Vetor Spae Methods."

Let us write a spei� dataset as a vetor d and a model as a vetor

m. Eah of these vetors belong to a separate vetor spae, with di�erent

dimensionality, norms, and implementations. Both must support the same

vetor operations.

First, a vetor an be saled by a onstant and added to another vetor, to

produe another valid vetor. I.e, if m

1

and m

2

are two separate models, and

� and � are sale fators, then �m

1

+�m

2

is also a model vetor. This vetor

saling and addition must be ommutative, assoiative, and distributive. Here

is the method that must be de�ned by the Java interfae for an abstrat vetor.

publi interfae Vet extends VetConst {

/** Add a saled version of another vetor to a saled version of this

vetor.

�param saleThis Multiply this vetor by this salar before adding.

�param saleOther Multiply other vetor by this salar before adding.

�param other The other vetor to be multiplied.

*/

publi void add(double saleThis, double saleOther, VetConst other) ;

...

}

We ould have de�ned methods to sale and add separately, but this method

o�ered the best ompromise between eÆieny and simpliity. Your imple-

mentation an optimize speial ases where a sale fator is 0 or 1.

VetConst is an interfae that supports only immutable operations. Vet

extends VetConst and add methods that modify the state of the vetor.

Next we de�ne a dot produt (or inner produt) for a normed vetor spae.

In vetor notation, any two vetors from the same spae an be dotted to

produe a salar: m

1

�m

2

. This dot produt is usually a simple Cartesian dot

produt of all internal parameters. Any non-Cartesian distanes are separated

into a separate \inverse ovariane" operator. The magnitude or norm of a

vetor is given by kmk

2

�m �C

~

�1

m

�m The signi�ane of this ovariane will

be learer one we de�ne an objetive funtion.

Here are the appropriate Java operations:

publi interfae VetConst extends Cloneable, java.io.Serializable {

/** Return the Cartesian dot produt of this vetor with another

vetor (not inluding any inverse ovariane).

�param other The vetor to be dotted.

An implementation of generalized inversion | W.S. Harlan 3

�return The dot produt.

*/

publi double dot(VetConst other);

/** This is the dot produt of the vetor with itself premultiplied

by the inverse ovariane. Equivalently,

Vet vet = (Vet) this.lone();

vet.multiplyInverseCovariane();

return this.dot(vet);

*/

publi double magnitude() ;

...

}

publi interfae Vet extends VetConst {

...

/** Optionally multiply a vetor by the inverse ovariane matrix.

Also alled preonditioning.

A method that does nothing is equivalent to an identity.

*/

publi void multiplyInverseCovariane();

...

}

Notie that all VetConst extends Cloneable and Serializable. Copies will

frequently be neessary. The optimization will minimize the number of vetors

instantiated simultaneously, to redue memory requirements, even if it requires

repeating some less expensive operations.

The VetConst.magnitude() method is redundant, but it is neessary to

avoid reating extra opies of the model. If your vetors are small, you an

use a simple implementation with a lone, as shown in the omment.

Serializable is not stritly neessary, but often highly desirable with re-

ating olletions of vetors. For example, you an use the wrapper lass

VetCahe to reate a olletion of Vet's that are ahed to disk. VetCahe

is itself a Vet. You may also want to implement a transform that distributes

work to other nodes. If neither of these situations are the ase, you need not

override the default serialization.

Use the stati method VetUtil.test(VetConst vet) to test your im-

plementation of all these methods.

We have now overed all mandatory operations required for our generalized

inversion. Some optional operations suh as hard onstraints and onditioning

are also supported and will be disussed later.

Abstration of non-linear simulation

Next we need an abstration of the alulations that simulate our data from a

partiular model. The inversion algorithm is not interested in implementation

An implementation of generalized inversion | W.S. Harlan 4

details, but only in the appliation of the transform. If our data are enapsu-

lated as a vetor d and our model as m, then we an write our simulation as

d = f(m).

With just a forward transform (simulation), no inversion ould eÆiently

estimate the model that best explains a partiular dataset. The inversion

would only be able to try di�erent random models and ompare the results,

without any suggestion on how best to modify the model. Our abstration of

a transform requires two more operations.

First, we must know how a small perturbation of a model a�ets the data.

If we add a small perturbation �m to a referene model m

0

, then we would

like to know the resulting perturbation to the data �d. We must be able to

implement a linear transform F

~

(m

0

) so that

�d = F

~

(m

0

) ��m � f(m

0

+�m)� f(m

0

): (1)

The operator F

~

(m

0

) is linear if the following equality holds

F

~

(m

0

) � (��m

1

+ ��m

2

) � � F

~

(m

0

) ��m

1

+ � F

~

(m

0

) ��m

2

(2)

for all �; �;�m

1

; and �m

2

:

I always attempt to parameterize my model so that this linearization is as

good as possible. The better the linearization, the better the onvergene.

Finally, we will need a transpose F

~

T

(m

0

) of the linear transform. A trans-

pose is de�ned by the equality

�d � [F

~

(m

0

) ��m℄ � [F

~

T

(m

0

) ��d℄ ��m for all �d and �m: (3)

The transpose is known as \bak-projetion" in tomography and as \bak-

propagation" in neural networks.

In addition to vetors for the data and model, our generi inversion will

require us to implement an interfae for this transform. In Java, the three

essential operations look like

publi interfae Transform {

/** Non-linear transform: data = f(model).

�param data Output. Initial values are ignored.

�param model Input. Unhanged.

*/

publi void forwardNonlinear(Vet data, VetConst model);

/** A linearized approximation of the forward transform

for a small perturbation (model) to a referene model (modelReferene).

The output data must be a linear funtion of the model perturbation.

Linearized transform:

data = F model ~= f(model + modelReferene) - f(modelReferene)

An implementation of generalized inversion | W.S. Harlan 5

�param data Output. Initial values are ignored.

�param model Perturbation to referene model.

�param modelReferene The referene model for the linearized operator.

*/

publi void forwardLinearized(Vet data, VetConst model,

VetConst modelReferene);

/** The transpose of the linearized approximation of the forward transform

for a small perturbation (model) to a referene model (modelReferene):

model = F' data. Add the result to the existing model.

�param data Input for transpose operation.

�param model Output. The transpose will be added to this vetor.

�param modelReferene The referene model for the linearized operator.

*/

publi void addTranspose(VetConst data, Vet model,

VetConst modelReferene);

...

}

In addition, there is an optional inverse Hessian method that an be used to

speed onvergene. We will disuss this method later.

Use the stati method VetUtil.getTransposePreision to ensure that

your transpose satis�es the dot-produt de�nition.

We now have all the properties required for a generalized inversion of a

transform to obtain a model vetor that best explains a data vetor.

A damped least-squared objetive funtion

The damped least squares objetive funtion behaves well for geophysial prob-

lems that are both over-determined and under-determined. When over-deter-

mined, errors in data will be distributed as uniformly as possible. When

under-determined, omponents of the model will be suppressed if they do not

improve the �t with data signi�antly. For motivation of damped least squares

as a stohasti optimization see Menke [7℄, Jaynes [4℄, or Box and Tiao [1℄.

We assume that our data d are a non-linear funtion f(m) of our modelm.

The noise vetor n will be any omponent of our data that we annot explain:

d = f(m) + n: (4)

Assume the noise n and model m are sampled from separate Gaussian dis-

tributions. The model that best explains a spei� dataset is the one that

minimizes this objetive funtion.

min

m

f[d� f(m)℄ �C

~

�1

n

� [d� f(m)℄ +m �C

~

�1

m

�mg: (5)

The ovariane matries desribe expeted orrelations between eah Gaussian

parameter in a vetor. (Assume without loss of generality that the mean of

the model and noise are zero. We an adjust our transform aordingly.)

An implementation of generalized inversion | W.S. Harlan 6

This objetive funtion will be easier to optimize if ovarianes are as diag-

onal as possible. I disuss suh manipulation of the quadrati objetive fun-

tion in the paper \Regularization by Model Parameterization" [3℄. I strongly

reommend you examine this paper as well.

You need only damp the magnitude of the model slightly to assure a sta-

ble inverse. If your noise and model samples are ompletely stationary and

independent, your Vet.multiplyInverseCovariane() methods need only

multiply by a salar. I �rst antiipate reasonable physial magnitudes for the

noise and for the model. If both noise and model attain their most reasonable

values, then the two squared penalty terms should be equal in the objetive

funtion (5). Instead I adjust ovarianes so that model parameters an attain

magnitudes 10 or 100 times their most reasonable values before the two terms

are equal. This minimal damping is suÆient to guarantee a stable inverse

without distorting the solution unneessarily. (Note that both ovarianes an

be multiplied by the same arbitrary sale fator without a�eting the �nal

solution.)

A Gauss-Newton algorithm iteratively approximates the objetive funtion

as a quadrati funtion of a perturbation of the model:

min

�m

[d� f(m

0

)� F

~

(m

0

) ��m℄ �C

~

�1

n

� [d� f(m

0

)� F

~

(m

0

) ��m℄

+(m

0

+�m) �C

~

�1

m

� (m

0

+�m): (6)

To minimize a ompletely quadrati objetive funtion, we an use the well-

understood onjugate-gradient algorithm (see Gill et al [2℄ or Luenberger [6℄).

The best perturbation of the model �m is is atually a linear funtion of the

remaining error in the data d� f(m

0

).

We might be tempted simply to add the perturbation �m to the referene

model m

0

, but non-linearity in the transform an ause divergene. Instead

the algorithm solves for a single sale fator � to multiply the perturbation

�m before addition.

min

�

[d� f(m

0

+ ��m)℄ �C

~

�1

n

� [d� f(m

0

+ ��m)℄

+(m

0

+ ��m) �C

~

�1

m

� (m

0

+ ��m): (7)

Often in geophysial problems, the original objetive funtion (5) has less

urvature than the quadrati approximation. In suh a ase, the estimated

sale fator � an be expeted to be less than one.

To searh for a single salar in a known range, the line-searh algorithm

(SalarSolver) minimizes the number of evaluations of the original objetive

funtion. I use a line-searh that searhes for a paraboli minimumwith hyper-

linear onvergene. If onvergene is poor beause of strong non-linearity, the

searh resorts to a golden setion with at least linear onvergene.

An implementation of generalized inversion | W.S. Harlan 7

Constraints and onditioning

The Vet and Transform interfaes inlude some optional methods to apply

onstraints and to improve onvergene.

Often our nonlinearity is due entirely to hard onstraints upon our model.

For example, seismi veloities may be onstrained to a strit range of positive

values.

We also often have a partial inverse of our forward transform, perhaps

from an analyti derivation that assumes our data are more evenly sampled.

Or we may know that a forward and transpose operation ampli�es ertain

omponents of the data. We should be able to use suh information to improve

onvergene.

If you have a simple hard onstraint, suh as an inequality, de�ne it in the

method Vet.onstrain(). An empty implementation does nothing. This

method does not a�et the onjugate-gradient optimization of the quadrati

approximation. Instead this method is applied after adding a perturbation to

the referene model. The method is alled repeatedly during the line searh

for a best sale fator for the perturbation.

You may instead wish to limit the degrees of freedom available to an update,

without similarly onstraining your referene model. Your model and your

updates need not share the same implementations of the Vet interfae. You

need only onvert from one to the other by implementing the Vet.projet

method, whih has the same arguments as the Vet.add method.

Most users of prepakaged inversions are familiar with \preonditioning"

as a method of improving onvergene. Instead of attempting to invert a

transform like d = f(m), one inverts a related problem P

~

� d = P

~

� f(m). The

preonditioning transform P

~

ampli�es omponents of the data that should be

inverted �rst. Unfortunately, solving this problem is not the same as solving

our original problem. Our �nal distribution of errors will be di�erent. We

have e�etively de�ned a new dataset and a new transform, whih of ourse

we an do at any time without help from the inversion ode.

As I mentioned before, my favorite method of stabilizing and improving

onvergene is a reparameterization of the model [3℄. This approah simpli�es

and diagonalizes the model ovariane operator.

Even after reparameterization, we may want to enourage ertain parts

of the model to be updated �rst. We may know that our forward transform

has greater or lesser sensitivity to ertain omponents of our model. Both the

Vet and Transform interfaes allow us to add \post-onditioning" that takes

advantage of suh knowledge.

The Vet interfae has an optional method Vet.postCondition(). If

you de�ne an empty implementation for this method, you will reeive the

default behavior, whih should be �ne. For better onvergene, this method

an apply a linear �lter to the data that enhanes omponents that should be

An implementation of generalized inversion | W.S. Harlan 8

optimized �rst, and suppresses omponents of lesser importane. This is the

last operation applied to a model gradient before use in the onjugate-gradient

algorithm. Your objetive funtion is not modi�ed, but your perturbations of

that model will improve. You should be able to obtain a better model in fewer

iterations.

Alternatively, you may have already have an approximate linear inverse for

the linearized forward transform. We all this inverse the \inverse Hessian"

beause the Hessian is the tensor urvature of the quadrati approximation.

You de�ne an approximate inverse Hessian by implementing the Transform

.multiplyInverseHessian() method. Leaving a default empty implementa-

tion is equivalent to assuming an identity.

For a given linearization F

~

(m

0

), the inverse Hessian G

~

(m

0

) should be the

partial inverse

G

~

(m

0

) � [F

~

T

(m

0

) � F

~

(m

0

)℄

�1

; or (8)

G

~

(m

0

) � [F

~

T

(m

0

) � F

~

(m

0

)℄ � I

~

: (9)

As long as the produt G

~

� F

~

T

� F

~

is more diagonal, or better balaned along

the diagonal, this inverse Hessian will improve onvergene. In tomography

suh a �lter is alled \hit ount balaning" and in slant-staks a \rho �lter."

Again, this operator implies no hange in the objetive funtion, just in the

way we perturb our solution.

One last optional operation is useful for very noisy data: Transform.adjust-

RobustErrors(Vet dataError). This operation does imply a hange to our

objetive funtion, though a minor one. This method will be passed an esti-

mate of the errors in �tting the data | the original data minus the simulation

of the data with the best urrent model. Your method may detet that a small

subset of your data has exeptionally large errors. Rather than allow a few bad

data to distort your result, your method an lip or sale bak these errors.

Do not hange the overall variane of the errors more than neessary. (If you

are familiar with L1 optimization, you an also use this method to divide all

errors by their previous magnitudes, to iteratively approximate a median �t

to your data.)

The Gauss Newton solver

Most everything unique about your inversion problem is desribed by your

implementation of the Vet and Transform interfaes. For an inversion with

all features desribed previously, you should all this stati method of Gauss-

NewtonSolver:

publi lass GaussNewtonSolver {

publi stati Vet solve (VetConst data,

An implementation of generalized inversion | W.S. Harlan 9

VetConst refereneModel,

VetConst perturbModel, // optional

Transform transform,

boolean dampOnlyPerturbation,

int onjugateGradIterations,

int lineSearhIterations,

int linearizationIterations,

double lineSearhError,

Monitor monitor) // optional

...

}

The return value of this method is the model that best explains an instane

of your data, passed as the �rst argument data.

The seond argument refereneModel is the model that should be used

as the initial guess of your solution. Often you an initialize this model to a

zero magnitude. The returned solution will be always be a revised instane of

this referene model.

If you want to perturb the referene model with an instane of a di�erent

lass, then provide a perturbModel. If perturbModel is null, then instanes

of the referene model will be used for perturbations. The projet method of

the referene model should aept the perturbation as an argument. Perturba-

tions should have fewer degrees of freedom than the referene model, beause

projetion will lose any additional degrees of freedom. The initial state of this

vetor is ignored.

Your Transform should be able to model your data from the referene

model with forwardNonlinear, and should be able to use an instane of the

referene or perturbed model as perturbations in the forwardLinearized and

addTranspose methods.

If dampOnlyPerturbations is true, then the objetive funtion will only

minimize di�erenes between your referene model and your new model. Oth-

erwise, the absolute Vet.magnitude() of your model will be minimized.

Remaining parameters let you ontrol how muh omputational e�ort you

are willing to expend on the solution.

Eah quadrati approximation should be minimized with at least a few

iterations of onjugate-gradients. The parameter onjugateGradIterations

should have a minimum of 3 iterations and a typial value of 4 or 5. If your

transform is relatively inexpensive, then indulge in a few more. Eah itera-

tion results in an additional evaluation of the linearized forward and transpose

transform. If this parameter has a value of 1, then your optimization will be

equivalent to non-linear steepest-desent, whih is notorious for poor onver-

gene when the Hessian has a poorly balaned diagonal.

To sale the onjugate-gradient perturbation, we must perform a line searh.

The parameter lineSearhIterations ontrols the maximum number of eval-

uations of the non-linear forward transform to be used for this searh. Beause

An implementation of generalized inversion | W.S. Harlan 10

of the hyper-linear onvergene, you an expet fairly good optimization of this

sale fator with as few as 12 iterations. Typially I prefer a safer value of 20,

beyond whih you are unlikely to see an improvement. If you speify 0, then

you will get a default sale fator of 1. Suh a hoie might onverge well on

a transform that was almost entirely linear to begin with. A value of 1 might

be a good hoie if the your only non-linearity results from hard onstraints

on your model from the Vet.onstrain() method.

The number of iterations atually used for the line searh depends on the

required preision of the sale fator. The parameter lineSearhError is the

aeptable frational error in the estimated sale fator. I typially use a value

of 0.001 or smaller.

The parameter linearizationIterations ontrols the outermost loop of

reapproximating the objetive funtion as a quadrati. Eah of these itera-

tions multiplies the number of onjugate-gradient and line searh evaluations

required. The number of quadrati approximations should be fairly small, un-

less your transform is strongly non-linear. I typially hoose a minimum value

of 3 unless I an a�ord more.

If you wish to save the results of eah linearized iteration, then you an

onstrut your own loop: set linearizationIterations to 1 and use the

solution from eah iteration as the referene model for the next. Managing

your own outer loop will not inrease the omputational ost signi�antly.

To get a good feel for the diÆulty of your problem, see if inreasing the

number of iterations or preision improves your solution signi�antly.

To trak the progress of your inversion, you an optionally pass a non-

null implementation of the Monitor interfae. This interfae de�nes a single

method publi void report(double fration) whih will be alled reg-

ularly with the urrent fration of work done. Values range from 0 at the

beginning to 1 when all work is done. To print the progress to a java Logger,

use the existing implementation in LogMonitor.

Simpler onjugate-gradient and salar solvers

If your transform is entirely linear, you need only use a onjugate-gradient

solver. You an implement the simpler LinearTransform interfae that on-

tains one instead of two forward transforms. Use this solver instead:

publi lass QuadratiSolver {

...

publi stati Vet solve (VetConst data,

VetConst refereneModel,

LinearTransform linearTransform,

boolean dampOnlyPerturbation,

int onjugateGradIterations,

Monitor monitor)

An implementation of generalized inversion | W.S. Harlan 11

...

}

All other parameters have the same meaning as before. No linearization or

line-searh is neessary, so the orresponding parameters have disappeared.

The onjugate-gradient algorithm itself is ontained in the QuadratiSol-

ver lass. To use this lass diretly, you must onstrut the normal equations

of your least-squares problem, inluding a Hessian operator. For inversion

problems, this form is muh less onvenient than the QuadratiSolver.solve

method above. But if your objetive funtion is already expressed as a simple

quadrati, then you might want to use this lower-level lass.

You might also have oasion to estimate a single parameter that mini-

mizes some arbitrary funtion. You an use the SalarSolver lass diretly

by implementing the single method in the SalarSolver.Funtion interfae.

This is the same algorithm used internally by the Gauss-Newton algorithm for

the line-searh of a sale fator.

Conlusion

I have desribed all methods available in the interfaes available for solving

a generalized least-squares inversion problem. Methods exist for testing the

internal onsisteny of your implementations. I think you will �nd a large

number of inversion problems an be solved by this framework. When the

simulation is too non-linear for this framework, it is also likely to be diÆult

for any framework to optimize well. You would be well advised to attempt a

reparameterization of your model.

Referenes

[1℄ George E.P. Box and George C. Tiao. Bayesian Inferene in Statistial

Analysis. John Wiley and Sons, In., 1973.

[2℄ Philip E. Gill, Walter Murray, and Margaret H. Wright. Pratial Opti-

mization. Aademi Press, 1981.

[3℄ William S. Harlan. Regularization by model reparameterization. This

website: papers/regularization.pdf, 1995.

[4℄ E.T. Jaynes. Probability Theory: The Logi of Siene. Cambridge Uni-

versity Press, 2003.

[5℄ David G. Luenberger. Optimization by Vetor Spae Methods. John Wiley

and Sons, In., 1969.

An implementation of generalized inversion | W.S. Harlan 12

[6℄ David G. Luenberger. Introdution to Linear and Nonlinear Programming.

Addison Wesley, 1973.

[7℄ WilliamMenke. Geophysial Data Analysis: Disrete Inverse Theory. Aa-

demi Press, In., 1984.

