
Optimization of a Neural Network

William S. Harlan

Feb 1999

Introdu
tion

Many dis
ussions of neural networks unne
essarily introdu
e a large vo
abulary of spe
ialized

terms. In fa
t, neural networks are a simple system of re
ursive equations that 
an be

optimized by 
onventional means. Any good book on optimization provides all the ne
essary

tools [1℄. We need only unambiguously write down the equations we are using, identify the

obje
tive fun
tion, and 
al
ulate a few derivatives.

The Re
ursive Equations

Neural-network equations map ve
tors of known data d

m

to 
orresponding known ve
tors of

parameters p

m

, indexed by m. The ve
tor of parameters might be a
tual physi
al properties

or statisti
al probabilities. Data 
an be physi
al measurements or numbers that index pos-

sible events. The equations 
ontain unknown 
oeÆ
ients, or weights, that the user adjusts

until known parameters are predi
ted a

urately. Then it is hoped that unknown parameters


an be estimated from new measurements of data.

Let's look at how simple these equations are. Intermediate ve
tors x

m;n

are expressed

re
ursively as a fun
tion of other ve
tors x

m;n�1

, usually with a di�erent dimensionality.

The �rst ve
tor x

m;0


orresponds to data d

m

, and the �nal ve
tor x

m;N


orresponds to the

parameters p

m

to be estimated. First, a pre-established non-linear transform f

n

is applied

to ea
h element of a ve
tor. Then linear transforms W

~

n


al
ulate ea
h sample of the output

ve
tor as a weighted sum of samples from the input ve
tor.

x

m;n

i

=

X

j

W

n

ij

f

n

j

(x

m;n�1

); (1)

or x

m;n

= W

~

n

� f

n

(x

m;n�1

) (in ve
tor notation). (2)

Find parameters p

m

� x

m;N

(3)

from data d

m

= x

m;0

: (4)

Usually the non-linear fun
tions f

n

apply independently to ea
h element of the ve
tor.

Fun
tions are expe
ted to be monotoni
 over the range 0 � f(x) < f(x

0

) � 1 for values

0 � x < x

0

� 1. The derivative df(x)=dx should also be 
ontinuous. Usually, the shape is a

1



Optimization of a Neural Network | W.S. Harlan 2

sigmoid or linear. Be
ause the notation presents no diÆ
ulty, I write this non-linear s
alar

fun
tion as a more general ve
tor fun
tion.

I 
ould also have reversed the order of linear and non-linear operators. A reversed order

is equivalent to setting f

1

and W

~

N

to identity operations. This form (1) is somewhat easier

to manipulate.

This nonlinear re
ursion 
an be abbreviated as

p

m

� x

m;N

(d

m

;W

~

1

; : : : ;W

~

N

) = x

m;N

: (5)

Perturbations of an Obje
tive Fun
tion

The best weightsW

~

n

are assumed to minimize the following least-squares obje
tive fun
tion

F , summed over all known pairs m of data measurements d

m

and model parameters p

m

.

min

fW

n

ij

g

F (W

~

1

; : : : ;W

~

N

) =

X

m;k

[p

m

k

� x

m;N

k

(d

m

;W

~

1

; : : : ;W

~

N

)℄

2

=

X

m

kp

m

� x

m;N

k

2

: (6)

A perturbation of the weights ÆW

~

n

will result in a linearized perturbation ÆF of the

obje
tive fun
tion:

ÆF (W

~

1

; : : : ;W

~

N

) = �

X

m;k

(p

m

k

� x

m;N

k

)Æx

m;N

k

= �

X

m

(p

m

� x

m;N

) � Æx

m;N

; (7)

where Æx

m;0

= 0 (8)

and Æx

m;n

i

=

X

j

ÆW

n

ij

� f

n

j

(x

m;n�1

) +

X

j

W

n

ij

X

k

�

�x

k

f

n

j

(x

m;n�1

)Æx

m;n�1

k

; (9)

or Æx

m;n

= ÆW

~

n

� f

n

(x

m;n�1

) +W

~

n

�r

~

f

n

(x

m;n�1

) � Æx

m;n�1

: (10)

Unperturbed variables retain their original referen
e values from the original non-linear for-

ward transform (1).

The perturbations (9) of the ve
tor elements Æx

m;n

are expressed as a linear fun
tion of

perturbed weights ÆW

~

n

. We 
an abbreviate the re
ursive equations (9) as a single linear

transform G

~

m;n

.

Æx

m;N

k

=

X

n;i;j

G

m;n

kij

ÆW

n

ij

(11)

or Æx

m;N

=

X

n

G

~

m;n

: ÆW

~

n

: (12)

Gradient optimization also requires the adjoint of this linearization. If the linearized forward

transform is expressed as a matrix, then the adjoint transform is just the transpose of this

matrix. A matrix would be unwieldy, but the re
ursive version of the adjoint equations is

not.

ÆW

n

ij

=

X

m

Æx

m;n

i

f

n

j

(x

m;n�1

); (13)



Optimization of a Neural Network | W.S. Harlan 3

or ÆW

~

n

=

X

m

Æx

m;n

[f

n

(x

m;n�1

)℄

�

(outer produ
t), (14)

where Æx

m;N

= �(p

m

� x

m;N

)ÆF (15)

and Æx

m;n�1

k

=

X

j

�

�x

k

f

n

j

(x

m;n�1

)

X

i

W

n

ij

Æx

m;n

i

; (16)

or Æx

m;n�1

= [r

~

f

n

(x

m;n�1

)℄

�

� (W

~

n

)

�

� Æx

m;n

: (17)

These perturbations do not equal those of the forward linearization. The adjoint re
ursion


an also be abbreviated with the linear transform G

~

m;n

.

ÆW

n

ij

=

X

m;k

G

m;n

kij

Æx

m;N

k

; (18)

or ÆW

~

n

= (G

~

m;n

)

�

� Æx

m;N

: (19)

If the linear transform G

~

m;n

were written as a single large matrix, then indeed the matrix

would be identi
al in the forward and adjoint equations (11) and (18). For optimization,

fortunately, we need not 
onstru
t this matrix expli
itly (as would be required by singular-

value de
omposition). Instead, we need only be able to multiply this linear transform or its

adjoint by spe
i�
 perturbations, using the re
ursions (9) and (16).

Optimization

The simplest neural network \training" algorithm adjusts the previous 
hoi
e of weights by

a s
aled gradient. This re
ursive algorithm is 
alled ba
k-propagation.

1. Initialize ea
h weight matrix W

~

n

.

2. Cal
ulate �W

n

ij

=

P

m;k

G

m;n

kij

[p

m

k

� x

m;N

k

(d

m

;W

~

1

; : : : ;W

~

N

)℄;

�W

~

n

= (G

~

m;n

)

�

� (p

m

� x

m;N

).

3. Repla
e ea
h W

~

n

by W

~

n

+ ��W

~

n

.

4. Return to step 2.

To redu
e the obje
tive fun
tion, the perturbation reverses the sign of the gradient. The

small s
ale fa
tor � is sometimes �xed a priori and never 
hanged. If the s
ale fa
tor is too

small, then many 
onse
utive steps may move in the same dire
tion. If the s
ale fa
tor is

too large, the perturbations may in
rease rather than de
rease the obje
tive fun
tion and

may even diverge. Although this algorithm is most 
ommonly 
ited, we 
an easily do better.

Let us turn to standard non-linear optimization methods.

Many steepest-des
ent algorithms would repla
e step 3 by a line sear
h to �nd an optimum

s
ale fa
tor.

1. Initialize ea
h weight matrix W

~

n

.



Optimization of a Neural Network | W.S. Harlan 4

2. Cal
ulate �W

~

n

as before.

3. Find � to minimize

P

m;k

[p

m

k

� x

m;N

k

(d

m

;W

~

1

+ ��W

~

1

; : : : ;W

~

N

+ ��W

~

N

)℄

2

4. Repla
e ea
h W

~

n

by W

~

n

+ ��W

~

n

.

5. Return to step 2.

This revised algorithm is guaranteed to �nd a lo
al minimum where the gradient is zero.

Step sizes are large. The line sear
h 
an use 
ombinations of paraboli
 �tting and golden

se
tions for speed and robustness.

A good estimate of the s
ale fa
tor 
an be estimated without an expli
it line sear
h.

1. Initialize ea
h W

~

n

.

2. Cal
ulate �W

~

n

as before.

3. Cal
ulate �x

m;N

=

P

n

G

~

m;n

: �W

~

n

.

4. Find � to minimize

P

m;k

[p

m

k

� ��x

m;N

k

℄

2

,

or equivalently � = (

P

m;k

p

m

k

�x

m;N

k

)=

P

m;k

�x

m;N

k

�x

m;N

k

):

5. Repla
e ea
h W

~

n

by W

~

n

+ ��W

~

n

.

6. Return to step 2.

When the linearization is a good approximation (parti
ularly in the vi
inity of a mini-

mum), the s
ale fa
tor will be very a

urate. Ea
h iteration will be mu
h more eÆ
ient than

a line sear
h. If the s
aled perturbation in
reases the obje
tive fun
tion in early non-linear

iterations, then a line sear
h 
an be used until the linearization improves.

The 
onvergen
e of these steepest des
ent algorithms should be improved by a PARTAN

or Flet
her-Reeves algorithm, whi
h retains and 
ombines 
onse
utive gradients. Neural

network referen
es use the word \momentum" to des
ribe similar strategies, usually with

invariable s
ale fa
tors.

An even more eÆ
ient alternative is to solve the linearized least-squares problem fully in

ea
h iteration | a Gauss-Newton approa
h:

1. Initialize ea
h W

~

n

.

2. Find the perturbations fw

~

1

; : : : ;w

~

N

g that minimize

P

m;k

[p

m

k

� x

m;N

k

(d

m

;W

~

1

; : : : ;W

~

N

)�

P

n;i;j

G

m;n

kij

w

n

ij

℄

2

.

3. Repla
e ea
h W

~

n

by W

~

n

+w

~

n

.

4. Return to step 2.



Optimization of a Neural Network | W.S. Harlan 5

Sin
e the obje
tive fun
tion in step 2 is a fully quadrati
 fun
tion of the perturbations w

~

n

,

we 
an use iterative least-squares methods like 
onjugate gradients.

If a steepest des
ent algorithm were applied with an unlimited number of in�nitesimal

perturbations, then the 
hanging weights would 
ontinuously de
rease the obje
tive fun
tion

until a lo
al minimum was rea
hed. Visualize following a path that is dire
tly downhill

at every point. The path 
annot as
end, no matter what may be beyond the next rise.

Pra
ti
al des
ent algorithms take large step sizes and may step over a small lo
al in
rease

in the obje
tive fun
tion, to �nd another minimum beyond.

To in
rease the 
han
es of �nding the global minimum with the pseudo-quadrati
 obje
-

tive fun
tion (6), we 
ould initialize with di�erent initial weights and dis
ard suboptimum

lo
al minima. If di�erent weights 
onsistently lead to the same solution, then the obje
tive

fun
tion is probably 
onvex and has only one global minimum.

Referen
es

[1℄ David G. Luenberger. Introdu
tion to Linear and Nonlinear Programming. Addison

Wesley, 1973.


