
Optimization of a Neural Network

William S. Harlan

Feb 1999

Introdution

Many disussions of neural networks unneessarily introdue a large voabulary of speialized

terms. In fat, neural networks are a simple system of reursive equations that an be

optimized by onventional means. Any good book on optimization provides all the neessary

tools [1℄. We need only unambiguously write down the equations we are using, identify the

objetive funtion, and alulate a few derivatives.

The Reursive Equations

Neural-network equations map vetors of known data d

m

to orresponding known vetors of

parameters p

m

, indexed by m. The vetor of parameters might be atual physial properties

or statistial probabilities. Data an be physial measurements or numbers that index pos-

sible events. The equations ontain unknown oeÆients, or weights, that the user adjusts

until known parameters are predited aurately. Then it is hoped that unknown parameters

an be estimated from new measurements of data.

Let's look at how simple these equations are. Intermediate vetors x

m;n

are expressed

reursively as a funtion of other vetors x

m;n�1

, usually with a di�erent dimensionality.

The �rst vetor x

m;0

orresponds to data d

m

, and the �nal vetor x

m;N

orresponds to the

parameters p

m

to be estimated. First, a pre-established non-linear transform f

n

is applied

to eah element of a vetor. Then linear transforms W

~

n

alulate eah sample of the output

vetor as a weighted sum of samples from the input vetor.

x

m;n

i

=

X

j

W

n

ij

f

n

j

(x

m;n�1

); (1)

or x

m;n

= W

~

n

� f

n

(x

m;n�1

) (in vetor notation). (2)

Find parameters p

m

� x

m;N

(3)

from data d

m

= x

m;0

: (4)

Usually the non-linear funtions f

n

apply independently to eah element of the vetor.

Funtions are expeted to be monotoni over the range 0 � f(x) < f(x

0

) � 1 for values

0 � x < x

0

� 1. The derivative df(x)=dx should also be ontinuous. Usually, the shape is a

1
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sigmoid or linear. Beause the notation presents no diÆulty, I write this non-linear salar

funtion as a more general vetor funtion.

I ould also have reversed the order of linear and non-linear operators. A reversed order

is equivalent to setting f

1

and W

~

N

to identity operations. This form (1) is somewhat easier

to manipulate.

This nonlinear reursion an be abbreviated as

p

m

� x

m;N

(d

m

;W

~

1

; : : : ;W

~

N

) = x

m;N

: (5)

Perturbations of an Objetive Funtion

The best weightsW

~

n

are assumed to minimize the following least-squares objetive funtion

F , summed over all known pairs m of data measurements d

m

and model parameters p

m

.

min

fW

n

ij

g

F (W

~

1

; : : : ;W

~

N

) =

X

m;k

[p

m

k

� x

m;N

k

(d

m

;W

~

1

; : : : ;W

~

N

)℄

2

=

X

m

kp

m

� x

m;N

k

2

: (6)

A perturbation of the weights ÆW

~

n

will result in a linearized perturbation ÆF of the

objetive funtion:

ÆF (W

~

1

; : : : ;W

~

N

) = �

X

m;k

(p

m

k

� x

m;N

k

)Æx

m;N

k

= �

X

m

(p

m

� x

m;N

) � Æx

m;N

; (7)

where Æx

m;0

= 0 (8)

and Æx

m;n

i

=

X

j

ÆW

n

ij

� f

n

j

(x

m;n�1

) +

X

j

W

n

ij

X

k

�

�x

k

f

n

j

(x

m;n�1

)Æx

m;n�1

k

; (9)

or Æx

m;n

= ÆW

~

n

� f

n

(x

m;n�1

) +W

~

n

�r

~

f

n

(x

m;n�1

) � Æx

m;n�1

: (10)

Unperturbed variables retain their original referene values from the original non-linear for-

ward transform (1).

The perturbations (9) of the vetor elements Æx

m;n

are expressed as a linear funtion of

perturbed weights ÆW

~

n

. We an abbreviate the reursive equations (9) as a single linear

transform G

~

m;n

.

Æx

m;N

k

=

X

n;i;j

G

m;n

kij

ÆW

n

ij

(11)

or Æx

m;N

=

X

n

G

~

m;n

: ÆW

~

n

: (12)

Gradient optimization also requires the adjoint of this linearization. If the linearized forward

transform is expressed as a matrix, then the adjoint transform is just the transpose of this

matrix. A matrix would be unwieldy, but the reursive version of the adjoint equations is

not.

ÆW

n

ij

=

X

m

Æx

m;n

i

f

n

j

(x

m;n�1

); (13)
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or ÆW

~

n

=

X

m

Æx

m;n

[f

n

(x

m;n�1

)℄

�

(outer produt), (14)

where Æx

m;N

= �(p

m

� x

m;N

)ÆF (15)

and Æx

m;n�1

k

=

X

j

�

�x

k

f

n

j

(x

m;n�1

)

X

i

W

n

ij

Æx

m;n

i

; (16)

or Æx

m;n�1

= [r

~

f

n

(x

m;n�1

)℄

�

� (W

~

n

)

�

� Æx

m;n

: (17)

These perturbations do not equal those of the forward linearization. The adjoint reursion

an also be abbreviated with the linear transform G

~

m;n

.

ÆW

n

ij

=

X

m;k

G

m;n

kij

Æx

m;N

k

; (18)

or ÆW

~

n

= (G

~

m;n

)

�

� Æx

m;N

: (19)

If the linear transform G

~

m;n

were written as a single large matrix, then indeed the matrix

would be idential in the forward and adjoint equations (11) and (18). For optimization,

fortunately, we need not onstrut this matrix expliitly (as would be required by singular-

value deomposition). Instead, we need only be able to multiply this linear transform or its

adjoint by spei� perturbations, using the reursions (9) and (16).

Optimization

The simplest neural network \training" algorithm adjusts the previous hoie of weights by

a saled gradient. This reursive algorithm is alled bak-propagation.

1. Initialize eah weight matrix W

~

n

.

2. Calulate �W

n

ij

=

P

m;k

G

m;n

kij

[p

m

k

� x

m;N

k

(d

m

;W

~

1

; : : : ;W

~

N

)℄;

�W

~

n

= (G

~

m;n

)

�

� (p

m

� x

m;N

).

3. Replae eah W

~

n

by W

~

n

+ ��W

~

n

.

4. Return to step 2.

To redue the objetive funtion, the perturbation reverses the sign of the gradient. The

small sale fator � is sometimes �xed a priori and never hanged. If the sale fator is too

small, then many onseutive steps may move in the same diretion. If the sale fator is

too large, the perturbations may inrease rather than derease the objetive funtion and

may even diverge. Although this algorithm is most ommonly ited, we an easily do better.

Let us turn to standard non-linear optimization methods.

Many steepest-desent algorithms would replae step 3 by a line searh to �nd an optimum

sale fator.

1. Initialize eah weight matrix W

~

n

.
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2. Calulate �W

~

n

as before.

3. Find � to minimize

P

m;k

[p

m

k

� x

m;N

k

(d

m

;W

~

1

+ ��W

~

1

; : : : ;W

~

N

+ ��W

~

N

)℄

2

4. Replae eah W

~

n

by W

~

n

+ ��W

~

n

.

5. Return to step 2.

This revised algorithm is guaranteed to �nd a loal minimum where the gradient is zero.

Step sizes are large. The line searh an use ombinations of paraboli �tting and golden

setions for speed and robustness.

A good estimate of the sale fator an be estimated without an expliit line searh.

1. Initialize eah W

~

n

.

2. Calulate �W

~

n

as before.

3. Calulate �x

m;N

=

P

n

G

~

m;n

: �W

~

n

.

4. Find � to minimize

P

m;k

[p

m

k

� ��x

m;N

k

℄

2

,

or equivalently � = (

P

m;k

p

m

k

�x

m;N

k

)=

P

m;k

�x

m;N

k

�x

m;N

k

):

5. Replae eah W

~

n

by W

~

n

+ ��W

~

n

.

6. Return to step 2.

When the linearization is a good approximation (partiularly in the viinity of a mini-

mum), the sale fator will be very aurate. Eah iteration will be muh more eÆient than

a line searh. If the saled perturbation inreases the objetive funtion in early non-linear

iterations, then a line searh an be used until the linearization improves.

The onvergene of these steepest desent algorithms should be improved by a PARTAN

or Flether-Reeves algorithm, whih retains and ombines onseutive gradients. Neural

network referenes use the word \momentum" to desribe similar strategies, usually with

invariable sale fators.

An even more eÆient alternative is to solve the linearized least-squares problem fully in

eah iteration | a Gauss-Newton approah:

1. Initialize eah W

~

n

.

2. Find the perturbations fw

~

1

; : : : ;w

~

N

g that minimize

P

m;k

[p

m

k

� x

m;N

k

(d

m

;W

~

1

; : : : ;W

~

N

)�

P

n;i;j

G

m;n

kij

w

n

ij

℄

2

.

3. Replae eah W

~

n

by W

~

n

+w

~

n

.

4. Return to step 2.
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Sine the objetive funtion in step 2 is a fully quadrati funtion of the perturbations w

~

n

,

we an use iterative least-squares methods like onjugate gradients.

If a steepest desent algorithm were applied with an unlimited number of in�nitesimal

perturbations, then the hanging weights would ontinuously derease the objetive funtion

until a loal minimum was reahed. Visualize following a path that is diretly downhill

at every point. The path annot asend, no matter what may be beyond the next rise.

Pratial desent algorithms take large step sizes and may step over a small loal inrease

in the objetive funtion, to �nd another minimum beyond.

To inrease the hanes of �nding the global minimum with the pseudo-quadrati obje-

tive funtion (6), we ould initialize with di�erent initial weights and disard suboptimum

loal minima. If di�erent weights onsistently lead to the same solution, then the objetive

funtion is probably onvex and has only one global minimum.
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