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Introdu
tion

Usually numeri
al methods of inversion and optimization begin with a dis
retized version of the

simulation equations. Di�erential equations are often easier to manipulate dire
tly, so that dis-


retization 
an be delayed until last. Here is an example of optimally perturbing a
ousti
 param-

eters to �t re
orded a
ousti
 waves. This approa
h is seen most often by resear
hers in optimal


ontrol, su
h as J.L. Lions [3℄ who also publishes often in the �eld of geophysi
s.

This example derives from an explanation I re
eived from Patri
k Lailly in 1984 at the Institut

Fran�
ais du Petrole. In 1986, I expanded on his example in my lab notebook. After all these years,

I still �nd it a useful example of multi-dimensional seismi
 inversion, so I've �nally typed it up.

In a separate paper [1℄, I show a detailed appli
ation with the one-dimensional wave-equation.

The methods in this parti
ular paper should be mu
h easier to generalize to other equations

and model parameters. My preferred methods of optimization (Gauss-Newton) require linearizing

simulation equations and 
al
ulating the adjoint of those linearized equations. Here is how you


an do most of that work analyti
ally.

In the 
ourse of this derivation, I will derive what is 
alled reverse-time migration, with an

image dire
tly related to perturbations of physi
al parameters.

Example linear equations and obje
tive fun
tion

Let us 
onsider the experiment of a single exploration seismi
 �eld gather with a seismi
 sour
e

pla
es at a surfa
e point x

s

and with re
eivers pla
ed at points x

r

. Ea
h tra
e is re
orded for

a �nite time 0 � t � T . Assume that land experiments re
ord the derivative of pressure with

depth. (Marine experiments re
ord the pressure dire
tly, whi
h is simpler.) Let 
(x) be the

a
ousti
 velo
ity, and �(x) the density. Des
ribe the pressure �eld P

s

(x; t) with the following

two-dimensional a
ousti
 equation.
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P

s

(x; t) = f

s

(t)Æ(x� x

s

)Æ(t); (1)

where the sour
e term

f

s

(t) =r�[f(t)=�(x

s

)℄; (2)
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and f(t) 
ontains body for
es.

Use the free surfa
e and 
ausal time boundary 
onditions:

P

s

(x; t)j

z�0

= 0; P

s

(x; t)j

t�0

= 0; and

�

2

�t

2

P

s

(x; t)

�

�

�

�

�

t�0

= 0; (3)

where z = x

1

is the verti
al dimension of x.

The surfa
e boundary 
ondition on P is not suÆ
ient and must be extended before P is well-

determined. Choose a semi-spheri
al surfa
e �
 that 
annot be rea
hed by waves traveling at the

maximum velo
ity V

max

for the maximum re
orded time T :

the surfa
e �
 = fx j z = 0 or k x k= TV

max

g; (4)

for the region 
 = fx j z � 0 and k x k� TV

max

g: (5)

The radius should be large enough so that no wave rea
hing this boundary �
 
an be re
orded

during the time 0 � t � T . We 
an arbitrarily extend the free surfa
e around this 
losed boundary

without a�e
ting the modeled pressures within the re
orded time:

P

s

(x; t)j

x2�


= 0: (6)

The variational form

The a
ousti
 di�erential equation (1) 
an also be written in the following variational integral form,

also 
alled the weak form:
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P

s

(x; t)� f

s

(t)Æ(x� x

s

)Æ(t)

)

q(x; t) dx dt = 0; (7)

for all H

2

fun
tions q(x; t). This integral is true for all q (whose se
ond derivatives are square

integrable) if and only if the original equation (1) also holds.

Conveniently, �nite elements [2℄ also uses the weak form. Zero-value boundary 
onditions (3)

and (4) are implied by the weak form, and are 
alled natural boundary 
onditions.

The obje
tive fun
tion

Let D

rs

(t) be the pressure �eld re
orded within the volume at known re
eiver positions x

r

for a

sour
e lo
ated at x

s

. De�ne an obje
tive fun
tion to mat
h a re
orded pressure �eld D

rs

(t) with a

modeled �eld P

s

(x; t) in a least-squares sense. The obje
tive fun
tion is a fun
tional of the three

unknown fun
tions of physi
al parameters �, 
, and f

s

(t).

J [�; 
; f

s

℄ =

1

2

X

r;s

Z

T

0

"

D

rs

(t)�

1

�(x

r

)

�P (x

r

; t)

�z

#

2

w(t)dt

=

1

2

X

r;s

Z
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D

rs

(t)�

1

�(x)

�P

s

(x; t)

�z

#

2

Æ(x� x

r

) dxw(t) dt: (8)
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w(t) is a smooth weighting fun
tion that we will �nd 
onvenient.

The optimization problem 
an be stated as follows: �nd the model parameters �, 
, and s

so that the �eld P

s

(x; t) de�ned by (7), (6), and (3) minimize the obje
tive fun
tion (8). The

obje
tive fun
tion has a least-squares form. The weighting fa
tor w(t) 
ompensates for geometri


spreading and absorption to give approximately equal weight to all parts of the modeled data.

General variational and obje
tive fun
tions

To optimize the model parameters model parameters �, 
, and s a

ording to equations (7), (6),

and (8), one must dis
over how a perturbation of the model parameters will a�e
t the obje
tive

fun
tion (8). Let us abbreviate the variational form (7) of our di�erential equations in the following

form:

Z

T

0

Z




q(x; t)L

1

[m(x; t)℄P

s

(x; t) dx dt = 0; 8q(x; t): (9)

where m(x; t) = [
(x); �(x); f

s

℄: (10)

P is also understood to be a impli
it fun
tion ofm(x; t), as determined by the a
ousti
 equations.

The exa
t form of L

1

is unimportant for the remainder of this derivation, ex
ept that it must

be expressible as a linear fun
tional operator on P . L

1

is a nonlinear operator on m(x; t). By a

di�erent 
hoi
e of model parameters (1=


2

� , 1=�, and f

s

), one 
ould also linearize L

1

with respe
t

to the model m, but this is not ne
essary.

Similarly, we 
an rewrite our obje
tive fun
tion (8) in a more general form as

J [m(x; t)℄ =

1

2

X

r;s

Z

T

0

Z




fD

rs

(t)� L

2

[m(x; t); t℄P

s

(x; t)g

2

Æ(x� x

r

) w(t) dx dt: (11)

Perturbations of the general formulation

First, let us use the variational equation (9) to relate perturbations of the model Æm to perturba-

tions of the pressure ÆP

s

:

Z

T

0

Z




qL

1

ÆP

s

dx dt = �

Z

T

0

Z




qr

m

(L

1

P ) � Æm dx dt; 8q: (12)

The gradient produ
t 
an be understood as meaning

r

m

G(m) � Æm =

d

d�

G(m+ �Æm)

�

�

�

�

�

�=0

; where G(m) = L

1

P; (13)

and both L

1

and P are fun
tions of m.

In this form the linear operators L

1

and r

m

(L

1

P ) both operate on perturbed quantities. Let

us repla
e this form by one that uses the adjoint operators on q. If a and b are fun
tions, the
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adjoint L

�

of a linear operator L is de�ned by < ajLb >

a

=< L

�

ajb >

b

. The bra
kets indi
ate the

s
alar produ
ts in the domains of a and b. For example

< q

1

jq

2

>

q

=

Z

T

0

Z




q

1

(x; t)q

2

(x; t) dx dt; (14)

< P

1

jP

2

>

P

=

Z

T

0

Z




P

1

(x; t)P

2

(x; t) dx dt; and (15)

< m

1

jm

2

>

m

=

Z




m

1

(x)m

2

(x) dx: (16)

So we 
an rewrite our perturbation equation (12) as follows:

Z

T

0

Z




ÆP

s

L

�

1

q dx dt = �

Z




Æm

Z

T

0

[r

m

(L

1

P )℄

�

q dt dx; 8q: (17)

If L

1


ontains only linear di�erential operators, then we 
an obtain their adjoints L

�

1

by integrating

by parts, as I will show in a later se
tion. This makes expli
it the impli
it dependen
e of P on m.

Gradient of the general obje
tive fun
tion

Next let us relate perturbations in the obje
tive fun
tion J to perturbations in the pressure P and

modeling parameters used in L

2

.

�ÆJ =

X

r;s

Z

T

0

Z




Æ(x� x

r

)(D

rs

(t)� L

2

P

s

)L

2

ÆP

s

w dx dt

+

X

r;s

Z

T

0

Z




Æ(x� x

r

)(D

rs

(t)� L

2

P

s

)r

m

(L

2

P

s

) � Æm w dx dt (18)

=

X

r;s

Z

T

0

Z




ÆP

s

L

�

2

[Æ(x� x

r

)(D

rs

(t)� L

2

P

s

) w℄ dx dt

+

X

r;s

Z




Æm �

Z

T

0

[r

m

(L

2

P

s

)℄

�

[Æ(x� x

r

)(D

rs

(t)� L

2

P

s

) w℄dt dx: (19)

Now for the 
lever part. The perturbed integral (17) must be true for all q. Choose q then so that

(17) equals the �rst term of the gradient (19) for all ÆP :

Z

T

0

Z




ÆPL

�

1

q dx dt =

X

r;s

Z

T

0

Z




ÆPL

�

2

[Æ(x� x

r

)(D

rs

(t)� L

2

P ) w℄ dx dt: (20)

For this equation to be true for all ÆP , q must satisfy

L

�

1

q =

X

r;s

L

�

2

[Æ(x� x

r

)(D

rs

(t)� L

2

P )w℄: (21)

This adjoint system of equations is very similar to the original set of equations for P , but with a

new sour
e term | the di�eren
e between the modeled and the a
tual data.
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If q satis�es this equation, then we 
an 
ombine the variational equation (17) and the pertur-

bation (19) of the obje
tive fun
tion to remove intermediate dependen
e on ÆP .

ÆJ =

Z




Æm

Z

T

0

[r

m

(L

1

P )℄

�

q dt dx

�

X

r;s

Z




Æm

Z

T

0

[r

m

(L

2

P )℄

�

[Æ(x� x

r

)(D

rs

(t)� L

2

P )w℄ dt dx: (22)

We 
an express this perturbation (22) as a gradient of the obje
tive fun
tion with respe
t to model

parameters m(x) at a spe
i�
 lo
ation x.

r

m

J [m(x)℄ =

ÆJ

Æm

�

�

�

�

�

m(x)

=

Z

T

0

[r

m

(L

1

P )℄

�

q dt

�

X

r;s

Z

T

0

[r

m

(L

2

P )℄

�

[Æ(x� x

r

)(D

rs

(t)� L

2

P )w℄ dt: (23)

The �rst term of this gradient (23) is the most important be
ause it provides information about

m at all positions. The se
ond term is non-zero only at points fx

r

g where the data are re
orded.

The simplest possible steepest des
ent optimization would perturb a referen
e value of m by

a s
aled version of its gradient. That is,

min

�

J [m

n

+ �r

m

J(m

n

)℄; and m

n+1

=m

n

+ �r

m

J(m

n

): (24)

One would also sum the perturbations over all sour
e positions to for a single perturbation of the

model. After one perturbation, the new referen
e value of m

n+1


ould be used to 
al
ulate a new

referen
e wave�eld and a new perturbation.

Perturbation and adjoint of the a
ousti
 equation

Let us now leave the general formulation and see how to handle the a
ousti
 equation in parti
ular.

Let us �rst perturb the obje
tive fun
tion (8) as the general perturbed form (19):

�ÆJ [�; 
; f

s

℄ = �

X

r;s

Z

T
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r

)

"

D

rs

(t)�
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ÆP

s

(x; t) dxw(t) dt

+

X

r;s

Z
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Æ(x� x

r

)

"

D
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(t)�

1

�(x)

�P

s

(x; t)

�z

#

�P

s

(x; t)

�z

Æ�(x)

�(x)

2

dxw(t) dt: (25)

Next we integrate by parts over z.

�ÆJ [�; 
; f

s

℄ =

X

r;s

Z

T
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�

�z
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r

)
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"

D
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(t)�
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�(x)
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s

(x; t)

�z

#)

dxw(t) dt

+

X

r;s

Z

T

0
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Æ�(x)

(

Æ(x� x

r

)

1
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D
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(t)�

1
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s
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�z

#
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s

(x; t)

�z

)

dxw(t) dt: (26)
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The boundary term disappears be
ause we require ÆP

s

(x; t) to vanish at the boundary, as does

P

s

(x; t).

The next step is to pla
e the variational a
ousti
 equation (7) as in our general perturbed form

(17). First perturb:
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Æ
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2
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�

2

P

s

(x; t)

�t

2

�r�

"

1

�(x)

2

rP

s

(x; t)

#)

Æ�(x) dx dt

�

Z

T

0

Z




q(x; t)Æ(x)Æf

s

(t) dx dt: (27)

We 
an integrate the time derivatives in (27) by parts twi
e over time. The divergen
e and gradient

terms of (27) 
an be rewritten with the following 
hain rule and divergen
e theorem:

Z




ar�b dx =

Z




r�(ab) dx�

Z




b �ra dx

=

Z

�


n̂ � b a d� �

Z




b �ra dx: (28)

a is a s
alar and b is a ve
tor. n̂ is the unit normal ve
tor to the boundary �
 of the volume 
.

So here is the rewritten form of the perturbed variational form (27):
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q(x; t)

1


(x)

2

�(x)

�

�t
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�

�

�

�

�
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ÆP
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�

�

�

�

�
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+
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T
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s
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�

2
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�t
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dx dt�
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1
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�

�n

ÆP

s

(x; t) d� dt

�

Z

T
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ÆP

s

(x; t)r�

"

1

�(x)

rq(x; t)

#

dx dt =

Z

T

0

Z




Æ
(x)

"
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(x)

3

�(x)

�

2

P

s

(x; t)

�t

2

#

q(x; t) dx dt

�

Z

T

0

Z




Æ�(x)

"
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(x)

2

�(x)

2

�

2

P

s

(x; t)

�t

2

�

1

�(x)

2

rP

s

(x; t) �r

#

q(x; t) dx dt

+

Z

T

0

Z

�


Æ�(x)

"

1

�(x)

2

�P

s

(x; t)

�n

#

q(x; t) d� dt�

Z

T

0

Z




Æf

s

(t)Æ(x)q(x; t) dx dt: (29)

The boundary terms at t = 0 disappear be
ause ÆP must observe the boundary 
onditions of P .

The �P=�n = n̂ �rP term is the derivative in the dire
tion of the normal to the surfa
e. Su
h

terms do not disappear. Other integrals that evaluate ÆP on the surfa
e �
 do disappear. Now set

the right side of the expanded (29) equal to the �rst term of of the perturbation of the obje
tive
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fun
tion (26) for all perturbations ÆP of the wave�eld. Then

(
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(x)

2

�(x)

�

2

�t

2

�r�

"

1

�(x)

r

#)

q(x; t)

= �

X

r;s

�

�z

(

Æ(x� x

r

)

w(t)

�(x)

"

D

rs

(t)�

1

�(x)

�P

s

(x; t)

�z

#)

(30)

in the interior. The boundary terms on �
 and t = T must vanish so

q(x; t)j

t=T

=

�

�t

q(x; t)

�

�

�

�

�

t=T

= q(x; t)j

�


= 0: (31)

These adjoint equations (30) and (31) require an extrapolation on q that is very similar to that on

P , ex
ept that extrapolation must now pro
eed ba
kards in time from t = T . A single appli
ation

of this extrapolation is 
alled reverse-time migration. Errors between the modeled and re
orded

data a
t as sour
es through the extrapolation at the lo
ations of the re
eivers.

The �rst term of ÆJ in equation (25) now equals the right side of (29). The boundary 
onditions

on q make the surfa
e �
 integral disappear. Thus

r




J(x) =

ÆJ

Æ
(x)

=

Z

T

0

1


(x)

3

�(x)

�

2

P

s

(x; t)

�t

2

q(x; t)dt: (32)

r

�

J(x) =

ÆJ

Æ�(x)

=

Z

T

0

"

1


(x)

2

�(x)

2

�

2

P

s

(x; t)

�t

2

�

1

�(x)

2

rP

s

(x; t) �r

#

q(x; t)dt

�

X

r;s

Z

T

0

Æ(x� x

r

)

�(x)

2

"

D

rs

(t)�

1

�(x)

�P

s

(x; t)

�z

#

�P

s

(x; t)

�z

w(t)dt (33)

r

s

J(t) =

ÆJ

Æf

s

(t)

= q(x; t)j

x=0

(34)

To perturb 
 we take the dot produ
t of the extrapolated q with a �ltered version of the previous

guess of the wave�eld

1




3

�

�

2

P

�t

2

. The perturbation of � requires the appli
ation of a di�erential

operator on q. The se
ond term of r

�

J

1

(from equation [26℄) applies only at the re
eiver points

and a
ts as an ampli�
ation of the re
orded tra
e. The perturbation of s is simply equal to the

adjoint wave�eld q evaluated at the sour
e position.

To start the iterations set f

s

(t) = Æ(t) and the parameters 
 and � to reasonable guesses. The

�rst perturbation will attempt to invert the primary re
e
tions and is equivalent to a so-
alled

reverse-time migration. The se
ond iteration ostensibly would invert se
ond-order s
attering, but

the poor 
hoi
e of ba
kground velo
ities would make it diÆ
ult to predi
t the se
ond-order form

from the �rst-order s
attering. This inversion, like all inverse s
attering methods, 
an only invert

high-frequen
y parameters 
hanges that are likely to 
reate re
e
tions. Smoother 
hanges in 
 and

� must be known beforehand.
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