
Parameter estimation of an aousti

di�erential equation by optimal ontrol

William S. Harlan

1984, 1986, 2002

Introdution

Usually numerial methods of inversion and optimization begin with a disretized version of the

simulation equations. Di�erential equations are often easier to manipulate diretly, so that dis-

retization an be delayed until last. Here is an example of optimally perturbing aousti param-

eters to �t reorded aousti waves. This approah is seen most often by researhers in optimal

ontrol, suh as J.L. Lions [3℄ who also publishes often in the �eld of geophysis.

This example derives from an explanation I reeived from Patrik Lailly in 1984 at the Institut

Fran�ais du Petrole. In 1986, I expanded on his example in my lab notebook. After all these years,

I still �nd it a useful example of multi-dimensional seismi inversion, so I've �nally typed it up.

In a separate paper [1℄, I show a detailed appliation with the one-dimensional wave-equation.

The methods in this partiular paper should be muh easier to generalize to other equations

and model parameters. My preferred methods of optimization (Gauss-Newton) require linearizing

simulation equations and alulating the adjoint of those linearized equations. Here is how you

an do most of that work analytially.

In the ourse of this derivation, I will derive what is alled reverse-time migration, with an

image diretly related to perturbations of physial parameters.

Example linear equations and objetive funtion

Let us onsider the experiment of a single exploration seismi �eld gather with a seismi soure

plaes at a surfae point x

s

and with reeivers plaed at points x

r

. Eah trae is reorded for

a �nite time 0 � t � T . Assume that land experiments reord the derivative of pressure with

depth. (Marine experiments reord the pressure diretly, whih is simpler.) Let (x) be the

aousti veloity, and �(x) the density. Desribe the pressure �eld P

s

(x; t) with the following

two-dimensional aousti equation.
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(t) =r�[f(t)=�(x
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)℄; (2)
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and f(t) ontains body fores.

Use the free surfae and ausal time boundary onditions:

P

s

(x; t)j

z�0

= 0; P

s

(x; t)j

t�0

= 0; and
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s

(x; t)

�

�

�

�

�

t�0

= 0; (3)

where z = x

1

is the vertial dimension of x.

The surfae boundary ondition on P is not suÆient and must be extended before P is well-

determined. Choose a semi-spherial surfae �
 that annot be reahed by waves traveling at the

maximum veloity V

max

for the maximum reorded time T :

the surfae �
 = fx j z = 0 or k x k= TV

max

g; (4)

for the region 
 = fx j z � 0 and k x k� TV

max

g: (5)

The radius should be large enough so that no wave reahing this boundary �
 an be reorded

during the time 0 � t � T . We an arbitrarily extend the free surfae around this losed boundary

without a�eting the modeled pressures within the reorded time:

P

s

(x; t)j

x2�


= 0: (6)

The variational form

The aousti di�erential equation (1) an also be written in the following variational integral form,

also alled the weak form:
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q(x; t) dx dt = 0; (7)

for all H

2

funtions q(x; t). This integral is true for all q (whose seond derivatives are square

integrable) if and only if the original equation (1) also holds.

Conveniently, �nite elements [2℄ also uses the weak form. Zero-value boundary onditions (3)

and (4) are implied by the weak form, and are alled natural boundary onditions.

The objetive funtion

Let D

rs

(t) be the pressure �eld reorded within the volume at known reeiver positions x

r

for a

soure loated at x

s

. De�ne an objetive funtion to math a reorded pressure �eld D

rs

(t) with a

modeled �eld P

s

(x; t) in a least-squares sense. The objetive funtion is a funtional of the three

unknown funtions of physial parameters �, , and f

s

(t).
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=
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w(t) is a smooth weighting funtion that we will �nd onvenient.

The optimization problem an be stated as follows: �nd the model parameters �, , and s

so that the �eld P

s

(x; t) de�ned by (7), (6), and (3) minimize the objetive funtion (8). The

objetive funtion has a least-squares form. The weighting fator w(t) ompensates for geometri

spreading and absorption to give approximately equal weight to all parts of the modeled data.

General variational and objetive funtions

To optimize the model parameters model parameters �, , and s aording to equations (7), (6),

and (8), one must disover how a perturbation of the model parameters will a�et the objetive

funtion (8). Let us abbreviate the variational form (7) of our di�erential equations in the following

form:
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q(x; t)L

1

[m(x; t)℄P

s

(x; t) dx dt = 0; 8q(x; t): (9)

where m(x; t) = [(x); �(x); f

s

℄: (10)

P is also understood to be a impliit funtion ofm(x; t), as determined by the aousti equations.

The exat form of L

1

is unimportant for the remainder of this derivation, exept that it must

be expressible as a linear funtional operator on P . L

1

is a nonlinear operator on m(x; t). By a

di�erent hoie of model parameters (1=

2

� , 1=�, and f

s

), one ould also linearize L

1

with respet

to the model m, but this is not neessary.

Similarly, we an rewrite our objetive funtion (8) in a more general form as

J [m(x; t)℄ =

1

2

X

r;s
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fD
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(t)� L
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[m(x; t); t℄P

s

(x; t)g

2

Æ(x� x

r

) w(t) dx dt: (11)

Perturbations of the general formulation

First, let us use the variational equation (9) to relate perturbations of the model Æm to perturba-

tions of the pressure ÆP

s

:
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qr

m

(L

1

P ) � Æm dx dt; 8q: (12)

The gradient produt an be understood as meaning

r

m

G(m) � Æm =

d

d�

G(m+ �Æm)

�

�

�

�

�

�=0

; where G(m) = L

1

P; (13)

and both L

1

and P are funtions of m.

In this form the linear operators L

1

and r

m

(L

1

P ) both operate on perturbed quantities. Let

us replae this form by one that uses the adjoint operators on q. If a and b are funtions, the
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adjoint L

�

of a linear operator L is de�ned by < ajLb >

a

=< L

�

ajb >

b

. The brakets indiate the

salar produts in the domains of a and b. For example

< q

1

jq

2

>

q

=

Z

T

0

Z




q

1

(x; t)q

2

(x; t) dx dt; (14)

< P

1

jP

2

>

P

=

Z

T

0

Z




P

1

(x; t)P

2

(x; t) dx dt; and (15)

< m

1

jm

2

>

m

=

Z




m

1

(x)m

2

(x) dx: (16)

So we an rewrite our perturbation equation (12) as follows:
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P )℄

�

q dt dx; 8q: (17)

If L

1

ontains only linear di�erential operators, then we an obtain their adjoints L

�

1

by integrating

by parts, as I will show in a later setion. This makes expliit the impliit dependene of P on m.

Gradient of the general objetive funtion

Next let us relate perturbations in the objetive funtion J to perturbations in the pressure P and

modeling parameters used in L

2

.
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Æ(x� x

r

)(D

rs

(t)� L

2

P

s

)r

m

(L

2

P

s
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+
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(t)� L

2

P

s

) w℄dt dx: (19)

Now for the lever part. The perturbed integral (17) must be true for all q. Choose q then so that

(17) equals the �rst term of the gradient (19) for all ÆP :
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P ) w℄ dx dt: (20)

For this equation to be true for all ÆP , q must satisfy

L
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1

q =

X

r;s
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[Æ(x� x

r

)(D

rs

(t)� L

2

P )w℄: (21)

This adjoint system of equations is very similar to the original set of equations for P , but with a

new soure term | the di�erene between the modeled and the atual data.
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If q satis�es this equation, then we an ombine the variational equation (17) and the pertur-

bation (19) of the objetive funtion to remove intermediate dependene on ÆP .
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P )w℄ dt dx: (22)

We an express this perturbation (22) as a gradient of the objetive funtion with respet to model

parameters m(x) at a spei� loation x.
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m
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The �rst term of this gradient (23) is the most important beause it provides information about

m at all positions. The seond term is non-zero only at points fx

r

g where the data are reorded.

The simplest possible steepest desent optimization would perturb a referene value of m by

a saled version of its gradient. That is,

min

�

J [m

n

+ �r

m

J(m

n

)℄; and m

n+1

=m

n

+ �r

m

J(m

n

): (24)

One would also sum the perturbations over all soure positions to for a single perturbation of the

model. After one perturbation, the new referene value of m

n+1

ould be used to alulate a new

referene wave�eld and a new perturbation.

Perturbation and adjoint of the aousti equation

Let us now leave the general formulation and see how to handle the aousti equation in partiular.

Let us �rst perturb the objetive funtion (8) as the general perturbed form (19):
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Next we integrate by parts over z.
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The boundary term disappears beause we require ÆP

s

(x; t) to vanish at the boundary, as does

P

s

(x; t).

The next step is to plae the variational aousti equation (7) as in our general perturbed form

(17). First perturb:
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q(x; t)Æ(x)Æf
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(t) dx dt: (27)

We an integrate the time derivatives in (27) by parts twie over time. The divergene and gradient

terms of (27) an be rewritten with the following hain rule and divergene theorem:
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n̂ � b a d� �
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b �ra dx: (28)

a is a salar and b is a vetor. n̂ is the unit normal vetor to the boundary �
 of the volume 
.

So here is the rewritten form of the perturbed variational form (27):
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Æf

s

(t)Æ(x)q(x; t) dx dt: (29)

The boundary terms at t = 0 disappear beause ÆP must observe the boundary onditions of P .

The �P=�n = n̂ �rP term is the derivative in the diretion of the normal to the surfae. Suh

terms do not disappear. Other integrals that evaluate ÆP on the surfae �
 do disappear. Now set

the right side of the expanded (29) equal to the �rst term of of the perturbation of the objetive
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funtion (26) for all perturbations ÆP of the wave�eld. Then
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(30)

in the interior. The boundary terms on �
 and t = T must vanish so

q(x; t)j

t=T

=

�

�t

q(x; t)

�

�

�

�

�

t=T

= q(x; t)j

�


= 0: (31)

These adjoint equations (30) and (31) require an extrapolation on q that is very similar to that on

P , exept that extrapolation must now proeed bakards in time from t = T . A single appliation

of this extrapolation is alled reverse-time migration. Errors between the modeled and reorded

data at as soures through the extrapolation at the loations of the reeivers.

The �rst term of ÆJ in equation (25) now equals the right side of (29). The boundary onditions

on q make the surfae �
 integral disappear. Thus
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ÆJ

Æ(x)

=
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q(x; t)dt: (32)

r

�

J(x) =

ÆJ
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r

s

J(t) =

ÆJ

Æf

s

(t)

= q(x; t)j

x=0

(34)

To perturb  we take the dot produt of the extrapolated q with a �ltered version of the previous

guess of the wave�eld

1



3

�

�

2

P

�t

2

. The perturbation of � requires the appliation of a di�erential

operator on q. The seond term of r

�

J

1

(from equation [26℄) applies only at the reeiver points

and ats as an ampli�ation of the reorded trae. The perturbation of s is simply equal to the

adjoint wave�eld q evaluated at the soure position.

To start the iterations set f

s

(t) = Æ(t) and the parameters  and � to reasonable guesses. The

�rst perturbation will attempt to invert the primary reetions and is equivalent to a so-alled

reverse-time migration. The seond iteration ostensibly would invert seond-order sattering, but

the poor hoie of bakground veloities would make it diÆult to predit the seond-order form

from the �rst-order sattering. This inversion, like all inverse sattering methods, an only invert

high-frequeny parameters hanges that are likely to reate reetions. Smoother hanges in  and

� must be known beforehand.
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