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Geophysial inversion frequently makes use of regularization, suh as the

\Tikhonov regularization" used by Kenneth Bube and Bob Langan [1℄ for

their \ontinuation approah." I'd like to suggest an adjustment of the obje-

tive funtion to allow faster onvergene of regularization and the ontinuation

approah. A damping term that disourages omplexity an be replaed equiv-

alently by a hange of variables to model simpliity diretly.

For an optimized inversion, an objetive funtion typially inludes a norm

of the di�erene between a data vetor d and a non-linear transform f(m) of

a model vetor m. The global minimum of this norm is often at, with little

sensitivity to large variations in the model.

For regularization (more than simple damping), a linear operator D

~

is

hosen to remove simpliity and preserve omplexity when applied to the model

vetor asD

~

�m. Most examples use a roughening operator, suh as a derivative,

to suppress long wavelengths and amplify short wavelengths. A regularized

objetive funtion adds a norm of this roughened model to the norm �tting

the data:
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This partiular l

2

objetive funtion is easily motivated as a maximum a pos-

teriori estimate of the model given the data. Additive noise is assumed to

be Gaussian and unorrelated with zero mean. The model is assumed to be

Gaussian and zero mean, with an inverse ovariane matrix equal to
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Asterisks indiate adjoints. The assumption that model samples are orrelated

is equivalent to the enouragement of simpliity. A onstant  adjusts the ratio

of varianes assumed for noise and the model.

Bube and Langan's ontinuation approah begins with a large onstant ,

minimizes the objetive funtion (1) for a �rst model, then redues  repeatedly

for a tradeo� between simpliity and auray in �tting the reorded data.

They �nd the simplest model possible to explain the data adequately, without

preventing the model from using omplexity to �t genuinely signi�ant features
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of the data. Informative details are added to the model when justi�ed by the

data, without unneessary distrating details that are poorly determined from

the data.

Eah minimization of the objetive funtion (1) for a �xed onstant  typ-

ially uses a desent method suh as Gauss-Newton with onjugate gradients.

The properties of the gradient are important to the rate of onvergene:
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The model is perturbed with saled sums of suessive gradients, evaluated

for di�erent referene versions m

0

of the model. The �rst term (3) is able

to introdue fairly arbitrary omplexity into the model immediately and at

any time, even if suh omplexity will be suppressed at the global minimum

of objetive funtion (1). The seond term (4) must wait until the referene

model m

0

has been revised in later iterations to suppress this unneessary

omplexity. Meanwhile, the �rst term (3) of later iterations an ontinue to

introdue other unneessary omplexity into the model. The seond term

removes omplexity in the referene model, not in the urrent perturbation.

Convergene is slow. Slow onvergene is a natural onsequene of applying

perturbations whih do not have any of the orrelations assumed for the model

samples. Instead, let us introdue the appropriate orrelation into all gradient

perturbations.

Assume a new operator S

~

as a partial right inverse of D

~

, so that the two

operators approximate an identity: D

~

�S

~

� I

~

. This operator should be designed

to preserve simpliity and suppress omplexity, although without destroying

omplexity entirely. If D

~

is a roughening operator like di�erentiation, then S

~

should be a smoothing operator like leaky integration.

More diretly, de�ne the simpli�ation operator as a fatored form of the

assumed ovariane. (Indeed, suh a fatorization always exists beause the

ovariane is positive semide�nite.)
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Minimization of the original objetive funtion (1) is entirely equivalent to

minimizing the objetive funtion with a new variable m

0

, where m = S
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The seond term redues to a simple damping norm, demonstrating that the

new model m

0

now has unorrelated samples. Although we optimize this new

model m

0

, we keep and use the original model m = S

~

� m

0

. Continuation

an adjust the onstant  as before, with idential results (assuming omplete

minimization of the objetive funtions [1℄ and [6℄).
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The revised gradient ontains the desired orrelation:
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The last operation appearing in the �rst term of this gradient (7) is the ad-

joint S

~

�

of the operator S

~

, both of whih are simpli�ation operators. (Many

suh operators are self-adjoint.) Unlike the �rst term (3) of the original gra-

dient, the revised term (7) suppresses omplexity from eah new perturbation

diretion. The original term (3) ontained arbitrary orrelations. If (3) were

entirely unorrelated, then the revised term (7) would have exatly the desired

orrelations assumed by the ovariane (5).

The two objetive funtions produe di�erent results when optimization is

inomplete. A desent optimization of the original objetive funtion (1) will

begin with omplex perturbations of the model and slowly onverge toward

an inreasingly simple model at the global minimum. A desent optimization

of the revised objetive funtion (6) will begin with simple perturbations of

the model and slowly onverge toward an inreasingly omplex model at the

global minimum. The latter strategy is more onsistent with the overall goal

of the ontinuation approah. A more eonomi implementation an use fewer

iterations. InsuÆient iterations result in an insuÆiently omplex model, not

in an insuÆiently simpli�ed model.

I also prefer to adjust more than a single sale fator . Instead, assume

a suite of simpli�ation operators S

i

~

whih allow inreasing omplexity as the

index i inreases. (Furthermore 8m
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and j > i; 9 m
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We then an optimize a suite of possible models, fm
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omplexity as i inreases. Use eah optimized model m

i

to initialize the next

m

i+1

. As multigrid methods have shown, we an thus improve our overall

onvergene by optimizing the most reliable (smoothest) global features in the

model before attempting �ner detail.

Finally, I think it easier to hoose a simpli�ation operator S

~

whih de-

sribes the desirable features of the model, rather than an operator D

~

whih

keeps only features thought to be undesirable. I see some value in onstruting

both, however, to hek the onsisteny of assumptions.
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