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Overview

Dix inversion estimates interval veloities from piked staking veloities, usu-

ally as a funtion of vertial two-way time. The staking veloities are assumed

to be explained by a root-mean-square (RMS) averaging of the interval velo-

ities. A onventional method [3℄ uses an expliit solution that inverts the

RMS integral. This expliit solution easily produes wildly unrealisti interval

veloities from small variations in staking veloities.

Constrained inversion �ts staking veloities with a smooth, bounded in-

terval veloity funtion. This method is slower but almost always preferable

to the fast expliit solution. Damped least-squares minimizes errors in piked

veloities and also minimizes unneessary omplexities in interval veloities.

Constrained inversion distributes errors uniformly when �tting the squared

reiproal of staking veloity. This distribution orresponds to uniform errors

in residual normal moveouts.

Interval veloities are onstruted as a sum of overlapping bell urves ex-

tending in all spatial diretions. CoeÆients of these urves are damped

to avoid unneessary sharpness in the estimated interval veloities. Rough

hanges in interval veloity are allowed only if strongly required by the input

data. Finally, interval veloities are not allowed to exeed spei�ed minimum

and maximum values.

An expliit Dix solution inverts one vertial funtion at a time, whereas

least-squares �nds a global solution. Eah estimated oeÆient must explain

staking veloities over a range of spatial positions on the map. Redundany

greatly improves, so a single bad staking funtion does not easily orrupt

the solution. A few bad data points are largely ignored when ontradited by

many neighboring values.

Many geophysial programmers familiar with damped least-squares have

developed similar methods [5, 2, 1℄.
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Smooth interval veloities

We assume interval veloities to be smooth in all physial diretions. This

assumption is most appropriate for \soft" roks, where uid pressure domi-

nates seismi veloities. In \hard" roks, veloities tend to be homogeneous in

intervals, with abrupt disontinuities at hanges in lithology. Soft onstraints

an still aurately desribe the time/depth onversion of hard media.

A smoothing operator with unit area (DC) does not introdue any bias

into smoothed values. On average, values are no larger or smaller than before.

If interval veloities are sampled as a funtion of vertial traveltime, then

depth is just the integral of veloity over time. If smoothing does not bias

the interval veloity, then it also does not bias depth onversions. Away from

the immediate viinity of a large disontinuity, smoothing has no e�et on

time/depth onversions.

Our onvolutional smoothing operator is a bell-shaped urve desribed by

a third-order polynomial. The urve has unit area to preserve magnitudes.

The onvolution is renormalized at boundaries to preserve unit area when the

onvolution is trunated. A smoothing width is the \half-width" of the urve,

the span over whih the urve drops to half the peak value. The total width

of the urve is twie the smoothing interval. Over this interval, the third-

order urve is b(r) = r

2

(2r � 3) + 1, where r � 1 is the distane from the

peak divided by the smoothing distane. The urve has zero slope at the peak

and endpoints. (The half-width in the Fourier domain is approximately the

reiproal of the half-width in the untransformed domain.)

Squared staking slownesses

A staking \veloity" is a parameter for the hyperboli urve that best �ts the

moveout of reetion times over soure-reeiver o�set. Staking veloities are

estimated from prestak seismi data by sanning ranges of aeptable values

and examining weighted sums of the data over o�set. Resolution depends on

the width of seismi wavelets at the largest reorded o�sets. Regular sampling

of staking veloities does not orrespond to regular sampling of wavelets.

However, the squared reiproal of staking veloity, whih we all squared

staking slowness (or \sloth"), does regularly sample wavelets at the farthest

o�set. We prefer to minimize errors in squared slowness as the best way to

minimize errors in orresponding reetion times.

Interpreters tend to pik staking veloities at loations where moveouts

hange the most. The loations of piks are not neessarily more signi�ant

or reliable than others. Interpreters also examine moveout adjustments at

loations well away from the piks. If the interpolated behavior is aeptable,

then no new piks are added. For this reason, we give interpolated staking

veloities the same signi�ane as piked values.
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We treat an interpolated regular grid of squared staking slownesses as our

hard data to be inverted. Usually input staking veloities are interpolated

linearly between piked times, with onstant values o� the ends. Funtions are

then triangulated and interpolated linearly over spatial diretions. A regular

grid of values needs enough resolution to represent all useful information in

the original funtions.

Root-mean-square equations

For this inversion, we assume a staking \veloity" to be equivalent to the

root-mean-square (RMS) average of interval veloities. This equivalene holds

exatly only for in�nitesimal o�sets in a horizontally strati�ed medium.

Let a single sampled funtion of squared staking slownesses be represented

by the one-dimensional vetor s, and interval veloities by v. Vetor indies

mark samples of vertial traveltime. Index zero orresponds to zero time. We

write the RMS average of v in disrete form as
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This equation (2) is typially referred to as the Dix equation, although the

original referene [3℄ preferred more aurate variations. This expliit solu-

tion an easily fail when required to take the square root of negative numbers.

Worse, statistially meaningless variations in staking veloities an ause in-

terval veloities to vary wildly.

For a onstrained inversion, we also �nd it useful to write the linearization

of this equation. A small perturbation �v
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of interval veloity results in the

following perturbation �s
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Unperturbed variables retain their referene values.

Finally, the adjoint linearized equation gives the perturbation of interval

veloity required to explain a small perturbation of squared staking slowness:
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Gradient optimization methods like onjugate-gradients usually require the

adjoint.
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Damped least-squares

Damped least-squares attempts to balane data errors with minimal omplex-

ity in the model.

Let B

~

be a linear smoothing operator with unit area. De�ne a smooth

interval veloity with the onvolution
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where the vetor w ontains the oeÆients of smooth, shifted basis funtions.

Impliitly, this smoothing operator also onvolves over all spatial indies, whih

we suppress in our equations.

The best oeÆients w should minimize the following objetive funtion:
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The small damping fator � is the ratio of the variane of data errors to the

variane of interval veloities. A large range of plausible values will give similar

results. Damping ensures that small variations in squared staking slowness

will not ause extreme variations in interval veloity. For a purely quadrati

objetive funtion, the damping is equivalent to pre-whitening, whih adds a

small onstant to the diagonal of the least-squares \normal" equations.

Optimization

One we have written the objetive funtion (6), we have unambiguously spe-

i�ed a solution, although only impliitly. Muh has been written on the opti-

mization of objetive funtions, so we will not over the details here. See Luen-

berger [4℄ for more information on the Gauss-Newton method and onjugate-

gradients.

The objetive funtion (6) is not a perfetly quadrati funtion of the in-

terval veloities v but behaves similarly to a quadrati. The objetive funtion

has a lear global minimum and is onvex far away from that minimum. In

the viinity of the minimum, the objetive funtion is indistinguishable from

a quadrati.

If a suboptimum set of oeÆients w produe a partiular set of squared

staking slownesses s, then the atual piked slownesses may di�er by an error

�s. With linearization (3), we an say that the best perturbation of oeÆients

�w should minimize the following objetive funtion:
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This approximate objetive funtion (7) is perfetly quadrati. The optimum

solution �w is a linear funtion of the data error �s. Quadrati objetive

funtions are easily optimized by the onjugate-gradient algorithm.

In our implementation, an outer Gauss-Newton loop iteratively replaes the

objetive funtion by the quadrati approximation (7). Eah Gauss-Newton

iteration begins with the best interval veloity funtion so far. The �rst itera-

tion uses a onstant interval veloity funtion far from the orret solution. An

inner onjugate-gradient loop minimizes the objetive funtion that has been

approximated as a quadrati to �nd a perturbation to the referene interval

veloity. A non-linear line-searh �nds the best fator to sale this perturba-

tion before adding to the referene interval veloity funtion. (The line-searh

algorithm uses a ombination of a paraboli Newton method for speed and a

golden-setion searh for robustness.) Finally, the Gauss-Newton loop begins

again with a new approximation of the objetive funtion. Typially, some four

to eight iterations are neessary for the Gauss-Newton and onjugate-gradient

loops.

We apply hard onstraints (minimum and maximum values) to interval

veloities immediately after updating with a perturbation. These onstraints

are honored during the non-linear line-searh, but not during the temporary

linearization for onjugate-gradients.

As a �nal optimization, early iterations begin with a large smoothing op-

erator, and thus few degrees of freedom. After full optimization with an over-

simpli�ed interval veloity, the smoothing is redued. Finer details are allowed

into the veloity model only when the bakground veloity is known to be near

the �nal orret solution. Beause of damping, rough details are introdued

only when justi�ed to �t a suÆiently large error in the piked data.
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