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Overview

Dix inversion estimates interval velo
ities from pi
ked sta
king velo
ities, usu-

ally as a fun
tion of verti
al two-way time. The sta
king velo
ities are assumed

to be explained by a root-mean-square (RMS) averaging of the interval velo
-

ities. A 
onventional method [3℄ uses an expli
it solution that inverts the

RMS integral. This expli
it solution easily produ
es wildly unrealisti
 interval

velo
ities from small variations in sta
king velo
ities.

Constrained inversion �ts sta
king velo
ities with a smooth, bounded in-

terval velo
ity fun
tion. This method is slower but almost always preferable

to the fast expli
it solution. Damped least-squares minimizes errors in pi
ked

velo
ities and also minimizes unne
essary 
omplexities in interval velo
ities.

Constrained inversion distributes errors uniformly when �tting the squared

re
ipro
al of sta
king velo
ity. This distribution 
orresponds to uniform errors

in residual normal moveouts.

Interval velo
ities are 
onstru
ted as a sum of overlapping bell 
urves ex-

tending in all spatial dire
tions. CoeÆ
ients of these 
urves are damped

to avoid unne
essary sharpness in the estimated interval velo
ities. Rough


hanges in interval velo
ity are allowed only if strongly required by the input

data. Finally, interval velo
ities are not allowed to ex
eed spe
i�ed minimum

and maximum values.

An expli
it Dix solution inverts one verti
al fun
tion at a time, whereas

least-squares �nds a global solution. Ea
h estimated 
oeÆ
ient must explain

sta
king velo
ities over a range of spatial positions on the map. Redundan
y

greatly improves, so a single bad sta
king fun
tion does not easily 
orrupt

the solution. A few bad data points are largely ignored when 
ontradi
ted by

many neighboring values.

Many geophysi
al programmers familiar with damped least-squares have

developed similar methods [5, 2, 1℄.
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Smooth interval velo
ities

We assume interval velo
ities to be smooth in all physi
al dire
tions. This

assumption is most appropriate for \soft" ro
ks, where 
uid pressure domi-

nates seismi
 velo
ities. In \hard" ro
ks, velo
ities tend to be homogeneous in

intervals, with abrupt dis
ontinuities at 
hanges in lithology. Soft 
onstraints


an still a

urately des
ribe the time/depth 
onversion of hard media.

A smoothing operator with unit area (DC) does not introdu
e any bias

into smoothed values. On average, values are no larger or smaller than before.

If interval velo
ities are sampled as a fun
tion of verti
al traveltime, then

depth is just the integral of velo
ity over time. If smoothing does not bias

the interval velo
ity, then it also does not bias depth 
onversions. Away from

the immediate vi
inity of a large dis
ontinuity, smoothing has no e�e
t on

time/depth 
onversions.

Our 
onvolutional smoothing operator is a bell-shaped 
urve des
ribed by

a third-order polynomial. The 
urve has unit area to preserve magnitudes.

The 
onvolution is renormalized at boundaries to preserve unit area when the


onvolution is trun
ated. A smoothing width is the \half-width" of the 
urve,

the span over whi
h the 
urve drops to half the peak value. The total width

of the 
urve is twi
e the smoothing interval. Over this interval, the third-

order 
urve is b(r) = r

2

(2r � 3) + 1, where r � 1 is the distan
e from the

peak divided by the smoothing distan
e. The 
urve has zero slope at the peak

and endpoints. (The half-width in the Fourier domain is approximately the

re
ipro
al of the half-width in the untransformed domain.)

Squared sta
king slownesses

A sta
king \velo
ity" is a parameter for the hyperboli
 
urve that best �ts the

moveout of re
e
tion times over sour
e-re
eiver o�set. Sta
king velo
ities are

estimated from presta
k seismi
 data by s
anning ranges of a

eptable values

and examining weighted sums of the data over o�set. Resolution depends on

the width of seismi
 wavelets at the largest re
orded o�sets. Regular sampling

of sta
king velo
ities does not 
orrespond to regular sampling of wavelets.

However, the squared re
ipro
al of sta
king velo
ity, whi
h we 
all squared

sta
king slowness (or \sloth"), does regularly sample wavelets at the farthest

o�set. We prefer to minimize errors in squared slowness as the best way to

minimize errors in 
orresponding re
e
tion times.

Interpreters tend to pi
k sta
king velo
ities at lo
ations where moveouts


hange the most. The lo
ations of pi
ks are not ne
essarily more signi�
ant

or reliable than others. Interpreters also examine moveout adjustments at

lo
ations well away from the pi
ks. If the interpolated behavior is a

eptable,

then no new pi
ks are added. For this reason, we give interpolated sta
king

velo
ities the same signi�
an
e as pi
ked values.
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We treat an interpolated regular grid of squared sta
king slownesses as our

hard data to be inverted. Usually input sta
king velo
ities are interpolated

linearly between pi
ked times, with 
onstant values o� the ends. Fun
tions are

then triangulated and interpolated linearly over spatial dire
tions. A regular

grid of values needs enough resolution to represent all useful information in

the original fun
tions.

Root-mean-square equations

For this inversion, we assume a sta
king \velo
ity" to be equivalent to the

root-mean-square (RMS) average of interval velo
ities. This equivalen
e holds

exa
tly only for in�nitesimal o�sets in a horizontally strati�ed medium.

Let a single sampled fun
tion of squared sta
king slownesses be represented

by the one-dimensional ve
tor s, and interval velo
ities by v. Ve
tor indi
es

mark samples of verti
al traveltime. Index zero 
orresponds to zero time. We

write the RMS average of v in dis
rete form as

1=s

j

=

1

j + 1

j

X

k=0

v

2

k

: (1)

A fast, expli
it inverse does exist for the RMS equation (1):
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This equation (2) is typi
ally referred to as the Dix equation, although the

original referen
e [3℄ preferred more a

urate variations. This expli
it solu-

tion 
an easily fail when required to take the square root of negative numbers.

Worse, statisti
ally meaningless variations in sta
king velo
ities 
an 
ause in-

terval velo
ities to vary wildly.

For a 
onstrained inversion, we also �nd it useful to write the linearization

of this equation. A small perturbation �v

k

of interval velo
ity results in the

following perturbation �s

j

of squared sta
king slowness:

�s

j

= [�2 s

2

j

=(j + 1)℄

j

X

k=0

v

k

�v

k

: (3)

Unperturbed variables retain their referen
e values.

Finally, the adjoint linearized equation gives the perturbation of interval

velo
ity required to explain a small perturbation of squared sta
king slowness:
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= v

k

1
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j
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Gradient optimization methods like 
onjugate-gradients usually require the

adjoint.
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Damped least-squares

Damped least-squares attempts to balan
e data errors with minimal 
omplex-

ity in the model.

Let B

~

be a linear smoothing operator with unit area. De�ne a smooth

interval velo
ity with the 
onvolution

v

k
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where the ve
tor w 
ontains the 
oeÆ
ients of smooth, shifted basis fun
tions.

Impli
itly, this smoothing operator also 
onvolves over all spatial indi
es, whi
h

we suppress in our equations.

The best 
oeÆ
ients w should minimize the following obje
tive fun
tion:
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The small damping fa
tor � is the ratio of the varian
e of data errors to the

varian
e of interval velo
ities. A large range of plausible values will give similar

results. Damping ensures that small variations in squared sta
king slowness

will not 
ause extreme variations in interval velo
ity. For a purely quadrati


obje
tive fun
tion, the damping is equivalent to pre-whitening, whi
h adds a

small 
onstant to the diagonal of the least-squares \normal" equations.

Optimization

On
e we have written the obje
tive fun
tion (6), we have unambiguously spe
-

i�ed a solution, although only impli
itly. Mu
h has been written on the opti-

mization of obje
tive fun
tions, so we will not 
over the details here. See Luen-

berger [4℄ for more information on the Gauss-Newton method and 
onjugate-

gradients.

The obje
tive fun
tion (6) is not a perfe
tly quadrati
 fun
tion of the in-

terval velo
ities v but behaves similarly to a quadrati
. The obje
tive fun
tion

has a 
lear global minimum and is 
onvex far away from that minimum. In

the vi
inity of the minimum, the obje
tive fun
tion is indistinguishable from

a quadrati
.

If a suboptimum set of 
oeÆ
ients w produ
e a parti
ular set of squared

sta
king slownesses s, then the a
tual pi
ked slownesses may di�er by an error

�s. With linearization (3), we 
an say that the best perturbation of 
oeÆ
ients

�w should minimize the following obje
tive fun
tion:
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This approximate obje
tive fun
tion (7) is perfe
tly quadrati
. The optimum

solution �w is a linear fun
tion of the data error �s. Quadrati
 obje
tive

fun
tions are easily optimized by the 
onjugate-gradient algorithm.

In our implementation, an outer Gauss-Newton loop iteratively repla
es the

obje
tive fun
tion by the quadrati
 approximation (7). Ea
h Gauss-Newton

iteration begins with the best interval velo
ity fun
tion so far. The �rst itera-

tion uses a 
onstant interval velo
ity fun
tion far from the 
orre
t solution. An

inner 
onjugate-gradient loop minimizes the obje
tive fun
tion that has been

approximated as a quadrati
 to �nd a perturbation to the referen
e interval

velo
ity. A non-linear line-sear
h �nds the best fa
tor to s
ale this perturba-

tion before adding to the referen
e interval velo
ity fun
tion. (The line-sear
h

algorithm uses a 
ombination of a paraboli
 Newton method for speed and a

golden-se
tion sear
h for robustness.) Finally, the Gauss-Newton loop begins

again with a new approximation of the obje
tive fun
tion. Typi
ally, some four

to eight iterations are ne
essary for the Gauss-Newton and 
onjugate-gradient

loops.

We apply hard 
onstraints (minimum and maximum values) to interval

velo
ities immediately after updating with a perturbation. These 
onstraints

are honored during the non-linear line-sear
h, but not during the temporary

linearization for 
onjugate-gradients.

As a �nal optimization, early iterations begin with a large smoothing op-

erator, and thus few degrees of freedom. After full optimization with an over-

simpli�ed interval velo
ity, the smoothing is redu
ed. Finer details are allowed

into the velo
ity model only when the ba
kground velo
ity is known to be near

the �nal 
orre
t solution. Be
ause of damping, rough details are introdu
ed

only when justi�ed to �t a suÆ
iently large error in the pi
ked data.
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