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Summary

This short paper derives a simple method of 
onstru
ting wavepaths (bandlimited raypaths) from

traveltimes using the Eikonal approximation. The Rytov approximation linearly perturbs the

phase of a wave�eld with respe
t to model parameters su
h as slowness. (The Born approximation

perturbs the amplitude.) When the Green's fun
tions for point sour
es are repla
ed by Eikonal

approximations, the Rytov perturbed wave�eld be
omes a s
aled, di�erentiated, time-delayed

version of the referen
e wave�eld.

Preliminaries

I will illustrate these approximations with a s
alar wave equation for isotropi
 pressure, assuming


onstant density. You 
an generalize the results for more general elasti
ity if you are willing to

allow separation of modes.

Let us �rst 
hoose our notation.
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2

p(x; t) = w(x; t); (1)
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p(x; f) = �w(x; f): (2)

The pressure p is the non-zero diagonal of the strain tensor. The ve
tor x is the spatial


oordinate. The re
ipro
al of velo
ity v is the slowness s. The sour
e term w is the divergen
e of

body for
es. f is the Fourier frequen
y, using Bra
ewell's 
onventions with �i2� in the exponent

for the forward transform. Transformed and untransformed fun
tions will be distinguished by

arguments.

A Green's fun
tion G solves the following equation.
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so that p(x; f) =

ZZZ

G(x;x

0

; f)w(x
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: (4)

If we perturb the Green's fun
tion de�nition (3) and dis
ard se
ond-order terms, we �nd the

Born approximation

1
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with the solution (using (4))
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whi
h de�nes
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The equivalent derivative for the wave�eld is
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Now that we have a 
onventional Born perturbation, we 
an 
ompare the Rytov.

The Rytov Approximation and Wavepaths

To arrive at a Rytov approximation, take the wave�eld derivative (8) and substitute the phase of

the Green's fun
tion, de�ned by the 
omplex logarithm
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allowing us to rewrite the wave�eld derivative (8) as
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In e�e
t, we have only regrouped the wave�eld derivative (9) after multiplying and dividing by the

same Green's fun
tion. This regrouping is 
ru
ial be
ause further approximations will be applied

to the phase derivative (13) rather than to the Green's fun
tion derivative (7).

Marta Woodward (1989, Ph.D thesis, Stanford) de�nes a wavepath as the imaginary part of

the phase derivative (13). She plotted the wavepath fun
tion over di�erent perturbed slowness po-

sitions x

0

while holding frequen
y f and endpoints x and x

00


onstant. The wavepath is stationary
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along a Fermat raypath, but also has a measurable Fresnel width. A multi-frequen
y wavepath

in
ludes an arbitrary sour
e fun
tion w(x

00

; f).

We reintrodu
e the sour
e by de�ning the phase of the pressure �eld

�(x; f) � log p(x; f) (14)

so that
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The numerator is the wave�eld derivative (8), and denominator is the wave�eld p(x; f) from (4)

In reports from the University of Utah Tomography and Migration 
onsortium, G. S
huster

and Yi Luo proposed pi
king and �tting unwrapped phases rather than traveltimes for seismi


tomography. This gradient (15) allows a des
ent optimization.

The Rytov approximation is de�ned as a linearization of the phase of a wave�eld with respe
t

to a parti
ular model parameter su
h as slowness. Here, the Rytov approximation is given by the

imaginary part of the gradient (15).

The Eikonal approximation

By next adding the Eikonal approximation, we see more intuitively how Rytov perturbations alter

the phase and time lag of a wave�eld. We 
an also modify raypath-based tomography to honor

the resolution of a sour
e with limited bandwidth.

To apply the Eikonal approximation, assume that the Green's fun
tion 
an be des
ribed by a

fun
tion of the form
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u and � are real and smooth fun
tions. Note that

p(x; t) =

ZZZ

u(x;x

0
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: (18)

Substitute the approximation (17) into the Green's fun
tion de�nition (3) for a homogeneous

equation. The terms s
aled by di�erent powers of frequen
y must ea
h vanish, giving the Eikonal

equation
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2
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Gradients r and Lapla
ians r

2

are taken with respe
t to the unprimed position x. The Eikonal

traveltime (phase delay) 
an be extrapolated from the Eikonal equation alone if the 
orresponding

term dominates. This 
ondition is satis�ed if

jrv(x)j � 2� jf j : (22)

In simple media, the transport equations 
an be repla
ed by geometri
 spreading fa
tors. Re
i-

pro
ity allows us to swap the position arguments in the Green's fun
tions; thus, we 
an extrapolate

the Eikonal (19) and transport equations (20) and (21) and in whi
hever dire
tion is 
onvenient.

Applying the approximation (17) to the phase linearization (13), we �nd
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The last equation uses the derivative (11).

The linearization (8) for the wave�eld 
an be rewritten as
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The time lag in this result (26) is the time di�eren
e between the fastest path between two points

and the fastest path passing through any s
attering point x

0

where slowness is perturbed. This

kernel integrates all slowness perturbations to get a perturbation of the wave�eld, as we require

for tomographi
 inversion. Unlike the Born approximation, these s
atterers 
ause phase delays

instead of re
e
tions.

Point Sour
es

Finally we 
an examine a point sour
e to see how this linearization a�e
ts a single two-point

raypath. A point sour
e requires that

w(x; f) = w(f)Æ(x� x

0
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; f)w(f): (27)

With the Eikonal approximation, we �nd
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We 
an easily 
ompute this linearization from extrapolations of the Eikonal and transport equa-

tions. Re
ipro
ity allows us to extrapolate the Eikonal traveltimes from ea
h endpoint of a par-

ti
ular path.

The phase, width, and 
ontours of the two-point wavepath (30) are dominated by the se
ond-

time derivative of the waveform �w(t). The stationary points on this wavepath are along the fastest

raypath. Lags are simply the di�eren
e in time between a perturbed path and the fastest path.

The amplitude s
aling (u(x;x

0

)) 
ontrols the de
ay of the wave�eld strength away from the fastest

path.

Numeri
ally one 
ould 
al
ulate this wavepath from expli
it traveltime extrapolation methods,

from either �nite-di�eren
es or ray methods. Extrapolate traveltimes from both endpoints to the

entire region of interest and sum the two tables. Subtra
t the minimum value from this total, and

the wave�eld values (30) as a fun
tion of this lag.


