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Summary

This short paper derives a simple method of onstruting wavepaths (bandlimited raypaths) from

traveltimes using the Eikonal approximation. The Rytov approximation linearly perturbs the

phase of a wave�eld with respet to model parameters suh as slowness. (The Born approximation

perturbs the amplitude.) When the Green's funtions for point soures are replaed by Eikonal

approximations, the Rytov perturbed wave�eld beomes a saled, di�erentiated, time-delayed

version of the referene wave�eld.

Preliminaries

I will illustrate these approximations with a salar wave equation for isotropi pressure, assuming

onstant density. You an generalize the results for more general elastiity if you are willing to

allow separation of modes.

Let us �rst hoose our notation.
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p(x; f) = �w(x; f): (2)

The pressure p is the non-zero diagonal of the strain tensor. The vetor x is the spatial

oordinate. The reiproal of veloity v is the slowness s. The soure term w is the divergene of

body fores. f is the Fourier frequeny, using Braewell's onventions with �i2� in the exponent

for the forward transform. Transformed and untransformed funtions will be distinguished by

arguments.

A Green's funtion G solves the following equation.
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If we perturb the Green's funtion de�nition (3) and disard seond-order terms, we �nd the

Born approximation
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with the solution (using (4))
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The equivalent derivative for the wave�eld is
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Now that we have a onventional Born perturbation, we an ompare the Rytov.

The Rytov Approximation and Wavepaths

To arrive at a Rytov approximation, take the wave�eld derivative (8) and substitute the phase of

the Green's funtion, de�ned by the omplex logarithm
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allowing us to rewrite the wave�eld derivative (8) as
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In e�et, we have only regrouped the wave�eld derivative (9) after multiplying and dividing by the

same Green's funtion. This regrouping is ruial beause further approximations will be applied

to the phase derivative (13) rather than to the Green's funtion derivative (7).

Marta Woodward (1989, Ph.D thesis, Stanford) de�nes a wavepath as the imaginary part of

the phase derivative (13). She plotted the wavepath funtion over di�erent perturbed slowness po-

sitions x

0

while holding frequeny f and endpoints x and x

00

onstant. The wavepath is stationary
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along a Fermat raypath, but also has a measurable Fresnel width. A multi-frequeny wavepath

inludes an arbitrary soure funtion w(x

00

; f).

We reintrodue the soure by de�ning the phase of the pressure �eld
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so that
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The numerator is the wave�eld derivative (8), and denominator is the wave�eld p(x; f) from (4)

In reports from the University of Utah Tomography and Migration onsortium, G. Shuster

and Yi Luo proposed piking and �tting unwrapped phases rather than traveltimes for seismi

tomography. This gradient (15) allows a desent optimization.

The Rytov approximation is de�ned as a linearization of the phase of a wave�eld with respet

to a partiular model parameter suh as slowness. Here, the Rytov approximation is given by the

imaginary part of the gradient (15).

The Eikonal approximation

By next adding the Eikonal approximation, we see more intuitively how Rytov perturbations alter

the phase and time lag of a wave�eld. We an also modify raypath-based tomography to honor

the resolution of a soure with limited bandwidth.

To apply the Eikonal approximation, assume that the Green's funtion an be desribed by a

funtion of the form
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u and � are real and smooth funtions. Note that
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Substitute the approximation (17) into the Green's funtion de�nition (3) for a homogeneous

equation. The terms saled by di�erent powers of frequeny must eah vanish, giving the Eikonal

equation
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Gradients r and Laplaians r

2

are taken with respet to the unprimed position x. The Eikonal

traveltime (phase delay) an be extrapolated from the Eikonal equation alone if the orresponding

term dominates. This ondition is satis�ed if

jrv(x)j � 2� jf j : (22)

In simple media, the transport equations an be replaed by geometri spreading fators. Rei-

proity allows us to swap the position arguments in the Green's funtions; thus, we an extrapolate

the Eikonal (19) and transport equations (20) and (21) and in whihever diretion is onvenient.

Applying the approximation (17) to the phase linearization (13), we �nd
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The last equation uses the derivative (11).

The linearization (8) for the wave�eld an be rewritten as
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The time lag in this result (26) is the time di�erene between the fastest path between two points

and the fastest path passing through any sattering point x

0

where slowness is perturbed. This

kernel integrates all slowness perturbations to get a perturbation of the wave�eld, as we require

for tomographi inversion. Unlike the Born approximation, these satterers ause phase delays

instead of reetions.

Point Soures

Finally we an examine a point soure to see how this linearization a�ets a single two-point

raypath. A point soure requires that
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With the Eikonal approximation, we �nd
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We an easily ompute this linearization from extrapolations of the Eikonal and transport equa-

tions. Reiproity allows us to extrapolate the Eikonal traveltimes from eah endpoint of a par-

tiular path.

The phase, width, and ontours of the two-point wavepath (30) are dominated by the seond-

time derivative of the waveform �w(t). The stationary points on this wavepath are along the fastest

raypath. Lags are simply the di�erene in time between a perturbed path and the fastest path.

The amplitude saling (u(x;x

0

)) ontrols the deay of the wave�eld strength away from the fastest

path.

Numerially one ould alulate this wavepath from expliit traveltime extrapolation methods,

from either �nite-di�erenes or ray methods. Extrapolate traveltimes from both endpoints to the

entire region of interest and sum the two tables. Subtrat the minimum value from this total, and

the wave�eld values (30) as a funtion of this lag.


