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This algorithm is designed to obtain enough information in one pass through

3D surfae seismi data to estimate reetion stati orretions. During this

pass, a running bu�er retains traes whose soures and reeivers are lose to

the next expeted trae. Eah new trae is ross-orrelated with traes in the

bu�er, and the ross-orrelations are saved in a disk �le. The neessary stati

orretions are optimized iteratively from the saved orrelation funtions, and

orretions are applied in a seond and �nal pass through the data. This note

uses a notation whih might larify the details.

Assume that surfae seismi data amplitudes d(x
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Soures are indexed with subsripts, and reeivers with supersripts.

The time axis has been strethed aording to some \normal moveout"

whih is a funtion of the soure-reeiver o�set kx
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The approximation is expeted to worsen as the olletion of traes inludes

soures and reeivers farther apart. The time window should be as deep as

possible and should inlude strong reetions.
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These rossorrelations are alulated only between traes whose soures, re-

eivers, and/or midpoints are within a limited distane of eah other:
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To the extent that our data model (1) is orret, then

the lags �
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The following algorithm suggests itself. Pik lags �
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that do maximize the

orrelations, then solve a least-squares problem:
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The above algorithm requires that a great many noisy ross-orrelations be

piked for possibly unreliable peaks. Instead, we an prepare and model ross-

orrelations of di�erent partial sums of the data. Some information will be

lost, but the sums will improve the signal-to-noise ratio of the orrelations and

will improve the reliability of the piked lags at orrelation peaks.

Several partial sums are possible. The most ommon is probably a ross-

orrelation of eah trae with a stak of those traes that share a partiular

midpoint. (Remember the nearby-midpoint onstraint in (3) applies to all

rossorrelations.)
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In addition we ould alulate the following sums of all rossorrelations shar-

ing a trae with a partiular soure or reeiver
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or also alulate the sum of all rossorrelations sharing traes with a partiular

pair of soures or reeivers
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Again we limit sums to nearby traes as in (3). We an examine the lags

over a limited range j� j < �

max

and �nd the peaks of any of these summed

rossorrelations:
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The peaks of the rossorrelations should ideally oinide with sums of surfae-

onsistent shifts. To �t any or all of these piked peaks, �nd the sum of soure

shifts �t

i

and reeiver shifts �t

k

whih �t the piked lags in a least-squares

sense:
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The simplest algorithm would use only the �rst of these sums.

We ould also maximize summed rossorrelations more diretly, but the

non-linearity is more inonvenient:
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The original data are orreted impliitly with these shifts:
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We ould begin the algorithm again with these orreted data, improving the

ability to pik orrelation peaks. In pratie we need not orret the data

expliitly. We only adjust the original rossorrelations:
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We an then realulate the sums (6), (7), and (8) and repeat the rest of

the algorithm. After onvergene, the data are expliitly orreted with the

aumulated shifts.


