
An algorithm for 3D residual stati
 
orre
tions

William S. Harlan (based on ideas from Greg Lazear)

1996

This algorithm is designed to obtain enough information in one pass through

3D surfa
e seismi
 data to estimate re
e
tion stati
 
orre
tions. During this

pass, a running bu�er retains tra
es whose sour
es and re
eivers are 
lose to

the next expe
ted tra
e. Ea
h new tra
e is 
ross-
orrelated with tra
es in the

bu�er, and the 
ross-
orrelations are saved in a disk �le. The ne
essary stati



orre
tions are optimized iteratively from the saved 
orrelation fun
tions, and


orre
tions are applied in a se
ond and �nal pass through the data. This note

uses a notation whi
h might 
larify the details.

Assume that surfa
e seismi
 data amplitudes d(x

i

;x

k

; t) were re
orded over

time t for many pairs of 3D ground positions for sour
es x

i

and re
eivers x

k

.

Sour
es are indexed with subs
ripts, and re
eivers with supers
ripts.

The time axis has been stret
hed a

ording to some \normal moveout"

whi
h is a fun
tion of the sour
e-re
eiver o�set kx

i

� x

k

k and the midpoint

kx

i

+ x

k

k=2. After su
h adjustments, nearby tra
es are assumed to resemble

ea
h other within a time window, ex
ept for time-invariant, surfa
e-
onsistent

sour
e shifts �t

i

and re
eiver shifts �t

k

:

d(x

i

;x

k

; t) � d(t��t

i

��t

k

) for t

1

< t < t

2

: (1)

The approximation is expe
ted to worsen as the 
olle
tion of tra
es in
ludes

sour
es and re
eivers farther apart. The time window should be as deep as

possible and should in
lude strong re
e
tions.

De�ne a 
ross 
orrelation 


kl

ij

(�) for spe
i�
 pairs of nearby sour
es and

re
eivers:
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d(x

i

;x

k

; t� �) d(x

j

;x

l

; t) dt: (2)

These 
ross
orrelations are 
al
ulated only between tra
es whose sour
es, re-


eivers, and/or midpoints are within a limited distan
e of ea
h other:
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�x

j

k < x
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; kx

k
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k < x

max

and k(x

i

+x

k

)=2� (x

j

+x

l

)=2k < x

max

:

(3)
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To the extent that our data model (1) is 
orre
t, then

the lags �

kl

ij

� �t

i

��t

j

+�t

k

��t

l

will maximize 


kl
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(�
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ij

): (4)

The following algorithm suggests itself. Pi
k lags �

kl

ij

that do maximize the


orrelations, then solve a least-squares problem:

�nd �t

i

and �t

k

to minimize

X
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)
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: (5)

The above algorithm requires that a great many noisy 
ross-
orrelations be

pi
ked for possibly unreliable peaks. Instead, we 
an prepare and model 
ross-


orrelations of di�erent partial sums of the data. Some information will be

lost, but the sums will improve the signal-to-noise ratio of the 
orrelations and

will improve the reliability of the pi
ked lags at 
orrelation peaks.

Several partial sums are possible. The most 
ommon is probably a 
ross-


orrelation of ea
h tra
e with a sta
k of those tra
es that share a parti
ular

midpoint. (Remember the nearby-midpoint 
onstraint in (3) applies to all


ross
orrelations.)
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In addition we 
ould 
al
ulate the following sums of all 
ross
orrelations shar-

ing a tra
e with a parti
ular sour
e or re
eiver
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or also 
al
ulate the sum of all 
ross
orrelations sharing tra
es with a parti
ular

pair of sour
es or re
eivers
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Again we limit sums to nearby tra
es as in (3). We 
an examine the lags

over a limited range j� j < �

max

and �nd the peaks of any of these summed


ross
orrelations:
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kl
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(9)

The peaks of the 
ross
orrelations should ideally 
oin
ide with sums of surfa
e-


onsistent shifts. To �t any or all of these pi
ked peaks, �nd the sum of sour
e

shifts �t

i

and re
eiver shifts �t

k

whi
h �t the pi
ked lags in a least-squares

sense:
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+
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+
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+
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The simplest algorithm would use only the �rst of these sums.

We 
ould also maximize summed 
ross
orrelations more dire
tly, but the

non-linearity is more in
onvenient:
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The original data are 
orre
ted impli
itly with these shifts:
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We 
ould begin the algorithm again with these 
orre
ted data, improving the

ability to pi
k 
orrelation peaks. In pra
ti
e we need not 
orre
t the data

expli
itly. We only adjust the original 
ross
orrelations:
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We 
an then re
al
ulate the sums (6), (7), and (8) and repeat the rest of

the algorithm. After 
onvergen
e, the data are expli
itly 
orre
ted with the

a

umulated shifts.


