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Hans Tieman spoke to the Stanford Exploration Proje
t on Jan 23, 1996 about depth

imaging with slant sla
ks. Among his te
hniques is a 
lever method of 
onverting slant

sta
ks of midpoint gathers into equivalent slant sta
ks of sour
e gathers. A sour
e gather

best represents a physi
al experiment that 
an be modeled easily by wave-equation methods.

Midpoint gathers, however, better in
lude the 
oheren
e of steep re
e
tions and better avoid

aliasing. A 
onversion takes advantage of the best of both domains.

The data

Seismi
 amplitudes d(s; r; t) are re
orded over time t as a fun
tion of surfa
e horizontal

positions for sour
e s and re
eiver r. Although these positions are one-dimensional we

must also be prepared to think of them as ve
tors indi
ating a surfa
e position. The time


oordinate is sampled evenly and densely enough that we 
an think of it as 
ontinuous.

For a given sour
e, we have a limited range of re
eivers (perhaps 3{5 kilometers), and vi
e

versa. Re
eiver positions are often sampled two or four times as densely as sour
e positions.

In marine data, both are relatively evenly sampled, but a spatial Fourier transform must

pay attention to aliasing or edge e�e
ts from the short span. Land data will be mu
h more

arbitrarily sampled.

De�ne the 
oordinates of full o�set h � r� s and midpoint y � (s+ r)=2. Resorted data


an be written as d(s = y � h=2; r = y + h=2; t). The well-sampled midpoint 
oordinate


overs the entire span of the survey.

A 
onventional slant sta
k

Slant sta
ks are 
ommonly applied to unsorted data, one shot at a time. This form is well

suited to de
onvolution of multiple re
e
tions from 
at re
e
tors. Su
h multiple re
e
tions

are periodi
 at zero-o�set, but not at a single �nite o�set h.

A slant sta
k attempts to des
ribe our re
orded data as a sum of dipping lines. A dip p

s

will measure the slope of time with o�set holding a sour
e position 
onstant.
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With ideal sampling and in�nite o�sets, this equation would des
ribe a plane-wave sour
e on

the surfa
e. A plane wave re
e
ting from 
at re
e
tors would produ
e periodi
 multiples at

any p

s

. Predi
tive de
onvolutions 
an dete
t this periodi
ity and remove multiple re
e
tions.

The simplest slant-sta
k sums data over all lines within a feasible range of dips. Let �

s

be the interse
tion at zero o�set of our imaginary plane wave in the shot gather.
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; �

s

) �

Z

d(s; r = s+ h; t = �

s

+ p

s

h)dh (2)

In pra
ti
e the integral over o�set h must be a dis
rete sum with a limited range of o�sets.

The inverse of this transform looks mu
h like another slant sta
k, with some adjustments

of the spe
trum. Papers are readily available to explain this inverse. I will 
on
entrate

instead on the 
onversion of one type of slant sta
k to another.

The Fourier version

Be
ause the time axis is well sampled and unaliased, we 
an safely Fourier transform the

data between time t and frequen
y f :

d(s; r; t) �

Z

exp(i2�ft)

~

d(s; r; f)df: (3)

Tildes will indi
ate Fourier transforms. Transform the slant sta
k from �

s

to its frequen
y

f

s

:

~
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) =
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exp(�i2�f

s
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s
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s

)d�

s

: (4)

The slant sta
k simpli�es numeri
ally. Substitute the transform (3) into the slant sta
k (2),

then take the transform (4) of both sides of the equation:
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d(s; r = s+ h; f)dhdfd�

s

: (5)

Rearranging terms, we redu
e integrals

~
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Z Z

f
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exp[�i2�(f

s
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s

g exp(i2�fp

s

h)

~

d(s; r = s+ h; f)dhdf

=

Z Z

fÆ(f

s

� f)g exp(i2�fp

s

h)

~

d(s; r = s+ h; f)dhdf

=

Z

exp(i2�f

s

p

s

h)

~

d(s; r = s+ h; f = f

s

)dh: (6)

The se
ond step uses the Fourier transform of a delta fun
tion Æ(f) =

R

exp(�i2�ft)dt. The

third uses the behavior of a delta fun
tion in an integral

R

g(f)Æ(f � f

0

)df = g(f

0

).

The midpoint gather

We should prefer a transform of a single sour
e gather be
ause these gathers 
orrespond to a

physi
al experiment that 
an be modeled easily by wave-equation methods. Unfortunately,
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re
e
tions from dipping layers and point s
atters may have a very 
ompli
ated expression

in a sour
e gather. We may be obliged to use many dips to 
apture their 
oheren
e. Worse,

many re
e
tions will have minimum times at �nite o�set, and a slant sta
k will alias some

of their energy.

If the data are �rst sorted by midpoint y and half-o�set h, then re
e
tions from dipping

lines and from points will still remain symmetri
 about zero o�set. A slant sta
k of a

midpoint gather will better 
apture the 
oheren
e of the re
e
tions:
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The Fourier version of a 
ommon-midpoint slant sta
k 
an be derived exa
tly as before. Let

f

y

be the Fourier frequen
y of �

y

:

~

Y (y; p

y

; f

y

) =

Z

exp(i2�f

y

p

y

h)

~

d(s = y � h=2; r = y + h=2; f = f

y

)dh: (9)

Unfortunately, this slant sta
k does not 
orrespond to any single seismi
 experiment, and

wave-equation modeling is mu
h more awkward.

Conversion of midpoint to sour
e gather

Fortunately, we 
an 
onvert this 
ommon-midpoint transform (9) into an equivalent 
ommon-

sour
e transform (6). Let us make two additional Fourier transforms over spatial dimensions

of s and y for the spatial frequen
ies k

s

and k

y

:

~
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=
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and

~

~
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=
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y

)dhdy: (11)

To pla
e the se
ond integral (11) in the form of the �rst (10), we should 
hange the variables of

integration from h and y to h and s. (The Ja
obian of this transformation is �(h; y)=�(h; s) =

1.) Substituting y = s+ h=2 we get

~

~
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y
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y

p
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~
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y

)dsdy

=

Z Z
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y

s) exp[i2�f

y

h(p

y

� k
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)℄

~
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y

)dsdy

=

~

~
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s
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y
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y

� k

y

=2f

y

; f

s

= f

y

): (12)
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Thus, a two-dimensional stret
h of the midpoint-gather transform be
omes equivalent to the

sour
e-gather transform. For a given dip over o�set in a midpoint gather p

y

, we 
an identify

a dip over midpoint
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The adjustment of p

s

= p

y

� k

y

=2f

y

subtra
ts half of this midpoint dip from the o�set dip.

With a 
areful appli
ation of the 
hain rule, and 
arefully distinguishing partial derivatives,

we 
ould arrive at the same result
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