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ABSTRACT

Conventional moveout analysis stretches and squeezes
traces to increase the coherence of reflected amplitudes in
prestack seismic gathers. Higher order residual moveouts re-
quire increasingly difficult scans of semblances with extra
dimensions or picking from correlations with many local
minima. Alternatively, we can model our data with an adap-
tive convolution that assumes consistent reflectivities at all
offsets (or angles). Short, convolutional wavelets can adjust
residual moveouts arbitrarily with offset, but slowly with time
(or depth). A Gauss-Newton optimization easily inverts this
transform by minimizing a least-squares objective function.
With estimated and normalized wavelets, we deconvolved the
original data to remove phase and spectral distortions that af-
fected more than one reflection. By constraining how slowly
wavelets adapt, we retained phase and amplitude changes dis-
tinctive to individual reflections. Deconvolution also avoided
any explicit smoothing or mixing of amplitudes among traces.
Estimated wavelets captured residual coherence and were
easier to track visually than individually weak reflections. By
adjusting the length and number of independent dynamic
wavelets, we can adjust the resolution to the redundancy sup-
ported by the data.

INTRODUCTION

Much prestack seismic processing requires the adjustment of
moveouts — the coherence and phase of reflections over source-
receiver offset or reflection angles. Examples are normal moveout
(NMO) stretching, surface-consistent static corrections, migration
velocity analysis, and even full-waveform inversion. Corrected gath-
ers produce a redundant image of subsurface reflectors, with each
trace belonging to a different propagation path. An accurate model

of the kinematics should show consistent coherence across prestack
traces.
We use the term residual moveout (RMO) for a variety of meth-

ods that stretch and squeeze prestack traces to increase their sim-
ilarity. Such residual corrections do not adjust for amplitudes or
phase shifts that vary with frequency.
Conventional NMO analysis is often followed by scans of higher

order RMO corrections. These corrections can adjust for anisotropic
effects such as earlier arrival times at larger offsets and steeper prop-
agation angles. Moveout curvature can also vary elliptically over
source-receiver azimuth due to anisotropic changes in stress and
fracturing (Tsvankin and Grechka, 2011). Reference moveouts can
be removed before scanning these residual corrections (Adler and
Brandwood, 1999; Hu et al., 2013).
Static corrections typically adjust for near-surface distortions that

are not easily incorporated in a velocity model. “Second-order stat-
ics” or “trim statics” (Cox et al., 1999) is a form of RMO analysis
that slowly adjust vertical shifts over the length of a trace to encour-
age consistency in prestack gathers. This analysis typically relies on
crosscorrelations and picking that are vulnerable to cycle-skipping
errors (Ursenbach and Bancroft, 2001).
For migration velocity analysis and tomography, RMO analysis

is key to iterative updates. In its earliest form (MacKay and Abma,
1993), a constant-offset prestack depth migration is scanned for
residual hyperbolic moveouts over offset. Reflection tomography
minimizes the variance of migrated depths at different image offsets
or angles (Harlan et al., 1991; Stork, 1992).
Full-waveform inversion prefers wave-equation kernels to tomo-

graphic raypaths, but still distinguishes reflectivity imaging from
low-frequency transmission (Almomin and Biondi, 2013; Lee et al.,
2013). Lower frequency updates benefit from RMO analysis such as
dynamic image warping, which stretches traces for greater similar-
ity (Hale and Luo, 2013; Hale and Ma, 2013).
Amplitude variation with offset (AVO) interpretation also depends

on detecting prestack moveouts accurately. A small RMO creates a
large spurious anomaly in a gradient stack (Castagna and Backus,
1993).
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In this paper, we explore how an adaptive convolutional model
can address these problems of RMO analysis, with greater control
over differences in amplitudes and phase with frequency.
RMO relies on stretching with lags that are a very nonlinear func-

tion of trace amplitudes. Local minima prevent any small adjustment
of lags from improving the solution. Algorithms depend on nonlinear
methods of measuring coherence, such as semblance scans or picking
peaks of crosscorrelations.
Convolution, on the other hand, is a linear transform. Wavelet

estimation and deconvolution allow least-squares solutions of quad-
ratic objective functions with a single global minimum. Although
a convolutional model has more degrees of freedom than an RMO
stretch, we can be selective in how we use detected changes in
coherence.
A convolutional model can avoid “NMO stretch” by distinguish-

ing time-invariant wavelets from reflections that converge over offset
(Lazaratos and Finn, 2004). Unlike static corrections, deconvolution
can remove surface-consistent distortions in phase and amplitude
(Levin, 1989). Adaptive deconvolution can restore spectral consis-
tency in waves that have propagated for different distances (Griffiths
et al., 1977).
The algorithmic formulation is a modification of wavelet balanc-

ing (Harlan, 1989), with the addition of dynamic changes over time
or depth. We model reflectivities with a single consistent trace that
should appear identical at all offsets and angles or vary slowly ac-
cording to a low-order analytic expression. Residual transmission
effects are modeled with a short convolutional wavelet that changes
rapidly with offset or angle, but slowly with time or depth. This
simple convolutional model can be optimized with a least-squares
objective function iteratively solved by a Gauss-Newton algorithm
(Luenberger, 1973; Harlan, 2004).
Once we have estimates of wavelets that vary over offset and time

(or depth and angle), we can deconvolve the original data and remove
residual phase distortions. Appropriate normalization can retain am-
plitude gradients important to AVO attributes. In our examples, we
will preserve the mean-squared energy of the original reflection
wavelet but allow for spectral adjustments of amplitude and phase
among wavelets. By forcing our dynamic wavelets to vary slowly
over a range of reflections, we should also retain phase and amplitude
anomalies that are distinctive for any single reflection.

METHODS

We begin with a dynamic variation on the convolutional model of
wavelet balancing (Harlan, 1989).
Let us model a single prestack gather djðtÞ of imaged or recorded

amplitudes d as a function of depth or time t and of a prestack index
j, which might identify various arbitrary offsets, imaged angles, and
azimuths. These offsets can be multidimensional and could even
include adjacent midpoints in a supergather. Wewill let t range from
0 to a maximum value of T, and we will index j from 1 to M total
traces.
Let us model this gather with a reflectivity rjðtÞ that varies slowly

with the prestack index j. Residual “transmission” effects are mod-
eled by a time-varying convolutional wavelet wjðτ; tÞ. The wavelet
amplitude w varies arbitrarily with the prestack index j. The wavelet
varies smoothly over the absolute time or depth t and convolves
over a short lag τ for a length Δτ.

In this way, we can model our data with the convolution

djðtÞ ¼
Z

Δτ∕2

−Δτ∕2
rjðt − τÞwjðτ; tÞdτ: (1)

This equation would appear overdetermined for the reflectivity rjðtÞ
and wavelet wjðτ; tÞ, except for our specifications of smoothness.
Reflectivity varies arbitrarily over time t and smoothly over j. The
wavelet varies arbitrarily over j and smoothly over time t. In addi-
tion, we could remove other degrees of freedom from our wavelets
with conditioning or postprocessing.
For example, we can use Shuey’s equation (Shuey, 1985) for a

zero-offset reflectivity rðtÞ and a second-order gradient gðtÞ that
model reflection angles θj according to rjðtÞ ¼ rðtÞ þ gðtÞsin2ðθjÞ.
For our application and example, we will assume reflectivity

does not vary with the prestack index j at all, allowing us to
write rðtÞ.
We will model the dynamic wavelet for a single trace j with N

time-invariant convolutional wavelets separated at an interval Δt.
We will use the index i for these N convolutional wavelets, written
as wijðτÞ. Each wavelet will best describe the dynamic convolution
at a particular time of ti ¼ iΔt. At any intermediate time t, the dy-
namic wavelet will be a sum of the two nearest convolutional wave-
lets, with a linear weight summing to one.
We can now write our time-varying dynamic wavelet as

wjðτ; tÞ ¼
XN
i¼1

wijðτÞΛ
�t − iΔt

Δt

�
: (2)

Linear weighting is written with the triangle function ΛðtÞ, with
an area of one, dropping linearly from a value of one at t ¼ 0 to a
value of zero at t ¼ �1:

ΛðtÞ ¼
�
1 − jtj if jtj < 1

0 if jtj ≥ 1
: (3)

We can combine our convolution equation 1 and our dynamic
wavelet equation 2 into a single expression for the data as

djðtÞ ¼
Z

Δτ∕2

−Δτ∕2
rðt − τÞ

XN
i¼1

�
wijðτÞΛ

�
t − iΔt
Δt

��
dτ: (4)

We also drop trace dependence j from the reflectivity.
Now it should be obvious that our inverse problem is overdeter-

mined. Assume we have M ¼ 100 traces of T ¼ 8 s each. We need
only one reflectivity trace of the same length (or two or three traces
to include an AVO gradient). We might chose convolutional wave-
lets with lag Δτ of 0.1 s and with a dynamic time interval Δt
of 1.0 s for N ¼ 9. That gives us 800 s of data and only 98 s of
unknowns — overdetermined by a factor of eight.
Notice that the forward modeling equation 4 is linear in the wave-

let and linear in the reflectivity, but not in both simultaneously.
There is nonuniqueness in the scaling of either: we can multiply
the reflectivity by a constant and divide the wavelets by the same
constant, without altering the result. To resolve this ambiguity, we
will assume that the reflectivity has the same amplitude variance as
the recorded data, so that it has the amplitude of an averaged stack
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trace. We will normalize the wavelets for a root-mean-square (rms)
amplitude of one.
Because the convolutional wavelets are relatively short, we may

want to discourage a sharp drop in amplitudes at the maximum lag
ofΔτ∕2. We could adjust the expected variance of the wavelet at the
maximum lag, or we could reparameterize the wavelet equation 2
(Harlan, 1995). For example,

wijðτÞ ¼ ŵijðτÞ · cos
�
πτ

Δτ

�
; for −

Δτ
2

≤ τ ≤
Δτ
2

: (5)

This tapers a normalized wavelet ŵijðτÞ with a cosine, from a maxi-
mum value of one at zero lag, down to zero at the maximum lag.
If our inversion damps the normalized wavelet with a uniform
variance, then the resulting convolutional wavelet will decline in
expected amplitude with increasing lag.
Substituting equation 5 into equation 4, we get

djðtÞ¼
Z

Δτ∕2

−Δτ∕2
rðt−τÞ

XN
i¼1

�
ŵijðτÞ ·cos

�
πτ

Δτ

�
Λ
�
t−iΔt
Δt

��
dτ:

(6)

Finally, we can pose our inverse problem with a least-squares
objective function. We can write our recorded data traces as dRj ðtÞ
and minimize

min
rðtÞ;ŵijðτÞ

J¼ 1

2

XM
j¼1

Z
T

0

½djðtÞ−dRj ðtÞ�2dt

þϵw
2

XM
j¼1

XN
i¼1

Z
Δτ∕2

−Δτ∕2
ŵijðτÞ2dτþ

ϵr
2

Z
T

0

rðtÞ2dt: (7)

Here, we minimized the squared error between the recorded data
dRj ðtÞ and modeled data djðtÞ. We also add two damping terms for
regularization, to avoid overamplifying poorly resolved compo-
nents. The small value ϵw is the ratio of the expected variance of
noise divided by the variance of the wavelet amplitudes. The small
value ϵr is the variance of noise divided by the variance of the re-
flectivity. In both cases, we can assume the variance of the un-
knowns is much larger than the variance of the noise.
We assume the variance of reflectivity to be that of the recorded

data amplitudes, and the noise to have 1∕1000 of the variance of the
reflectivity, so that ϵr ¼ 0.001. As mentioned before, wavelets are
given an expected variance of one because they multiply the vari-
ance of the reflectivity. If data amplitudes are first normalized to
one, then ϵw ¼ 0.001 also.
Damping has little effect in early iterations of a gradient-based

optimization and is only formally necessary for stability after a large
number of iterations. (This is one of the advantages of the normali-
zation in equation 5 for waveform variance [Harlan, 1995]). These
damping terms have the effect of suppressing poorly determined
eigenvectors with small eigenvalues; damping equivalently adds a
small epsilon to the diagonal of the least-squares normal equations.
Thus, we avoid making large changes to the model for negligible
improvements in fitting the recorded data. Conjugate gradients con-
verge first on the eigenvectors with the largest eigenvalues and with
the largest contribution to the data.

This objective function is quadratic in each of the unknowns,
but not in both simultaneously. A Gauss-Newton optimization will
iteratively approximate this objective function by linearizing the
forward modeling equation 6 in both unknowns.
Optimization requires the gradient of the objective function equa-

tion 7 with respect to each of the unknowns.
We can approximate a linear perturbation of the data δdjðtÞ with

small perturbations of our model δŵijðτÞ and δrðtÞ as

δdjðtÞ≍
Z

Δτ∕2

−Δτ∕2
δrðt−τÞ

XN
i¼1

�
ŵijðτÞ·cos

�
πτ

Δτ

�
Λ
�
t−iΔt
Δt

��
dτ

þ
Z

Δτ∕2

−Δτ∕2
rðt−τÞ

XN
i¼1

�
δŵijðτÞ·cos

�
πτ

Δτ

�
Λ
�
t−iΔt
Δt

��
dτ

(8)

The gradient of the objective function equation 7 with respect to
the unknowns is just the transpose of this linearized operator on the
data errors.
The gradient equation 9 with respect to the reflectivity is a cor-

relation of each data error with the wavelets, then a sum over all
traces

∂J
∂rðtÞ ¼

XM
j¼1

Z
Δτ∕2

−Δτ∕2

�
½djðtþ τÞ−dRj ðtþ τÞ�

:
XN
i¼1

�
ŵijðτÞ× cos

�
πτ

Δτ

�
Λ
�
tþ τ− iΔt

Δt

��	
dτþ ϵrrðtÞ:

(9)

The gradient (equation 10) with respect to the normalized wave-
lets is a correlation of the data error with the current reflectivity,
with appropriate weighting for the windows and lags:

∂J
∂ŵijðτÞ

¼
Z

T

0

�
½djðtÞ − dRj ðtÞ�rðt − τÞ cos

�
πτ

Δτ

�
Λ
�
t − iΔt
Δt

�	
dt

þ ϵwŵijðτÞ: (10)

We now have all operations required for optimization with a
Gauss-Newton optimization (Harlan, 2004). We can begin with
wavelets that are impulsive and behave as an identity transform.
Impulsive wavelets will result in a first estimate of reflectivity rðtÞ
that is the average of all data traces. A second iteration will adjust
wavelets to better fit the average reflectivity, which will in turn
improve the average reflectivity. Further iterations refine these
results.
A Gauss-Newton optimization iteratively updates reference val-

ues for all unknowns and relinearizes the forward transform so that
the objective function becomes purely quadratic in the perturbations
(Luenberger, 1973). Linearized perturbations are then solved by
least-squares conjugate gradients. Gauss-Newton finds an optimum
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scale factor for linearized perturbations with a line search before
adding them to reference values. Or, we can alternate updates of wave-
lets and reflectivities and avoid the line search (a modified Gauss-
Seidel approach). Both approaches get to the same solution after a
fairly small number of iterations (after adjusting the nonunique scale
factor).
Even though reflectivity may be oversimplified, we are still able

to estimate wavelets that describe very subtle changes in coherence
and amplitude with offset. On the other hand, these wavelets cannot
change rapidly over time and should find it difficult to fit changes
unique to a single reflection, and not to its neighbors. This smooth
consistency over time makes it more likely that wavelets describe
residual transmission distortions and not changes in reflectivity
(Harlan, 1989).
The estimated reflectivity can be used directly as a higher reso-

lution least-squares stack of the data, with an implicit deconvolution
of the estimated wavelets. If we want to remove the residual effects
from our prestack data, then we can use these estimated wavelets
explicitly to deconvolve the original data.
To deconvolve with our estimated wavelets, we return to our orig-

inal modeling equation 1, which has a separate reflectivity rjðtÞ for
each trace. We accept our wavelets wjðτ; tÞ and data dRj ðtÞ as known
and solve for each trace’s reflectivity rjðtÞ with a purely linear least-
squares inverse:

min
rjðtÞ

1

2

XM
j¼1

Z
T

0

�
dRj ðtÞ −

Z
Δτ∕2

−Δτ∕2
rjðt − τÞwjðτ; tÞdτ

�
2

dt

þ ϵr
2

Z
T

0

rjðtÞ2dt: (11)

This purely quadratic objective function can be iteratively optimized
by conventional conjugate gradients. This deconvolution processes
each trace rjðtÞ independently. There is no smoothing or mixing of
amplitudes among traces.
As partial protection for AVO, the wavelets wjðτ; tÞ can be nor-

malized for unit rms amplitude before applying the deconvolution.
This will still allow energy to be redistributed among frequencies,
however. If the amplitude spectrum of each trace needs to be pre-
served, then wavelets can also be whitened without altering the
phase (Claerbout, 1985).
Too much normalization will, however, prevent corrections of

near-surface static filtering that is of no interest to AVO. It might
be preferable instead to increase the interval among independent
wavelets, which must then adapt more slowly over time and depth.
Wavelets will then model residual corrections shared by a greater
number of reflections.

EXAMPLES

In Figure 1a, we show a supergather from land
data, sorted by increasing offset and combining
several midpoint bins to increase fold. The data
are sampled at 4 ms over time.
A crude NMO correction has been applied.

RMOs are visibly not flat at farther offsets. An
amplitude gain preserved some changes in ampli-
tude with offset. Reflection wavelets change
character, particularly in the strongest reflection
around 3.8 s. Near-surface effects have damaged
the continuity of central traces in many reflec-
tions. There is also some steeply dipping coher-
ent noise that could have been removed first, but
has been left in.
In Figure 1b, we show our final result, a decon-

volution of the original data with some estimated
dynamically changing wavelets. Notice the in-
creased continuity and flatness of all reflectors.
Each wavelet was 51 samples (200 ms) long.

The interval among independent wavelets was
300 samples (1.2 s). Reflectivities were assumed
to have the same variance as the recorded data,
and wavelets were given a variance of one. Noise
was assumed to have 1000th of the variance of
the data and reflectivity.
Reflectivities and wavelets were updated with

six conjugate-gradient iterations each and four
Gauss-Newton relinearizations. This amounts to
24 forward and transpose convolutions. The nu-
merical cost is linear in the number of samples in
a wavelet, but independent of the interval among
wavelets.
The estimated dynamic wavelets themselves

are visible in Figure 2a. To display, we began with
Figure 1. Prestack CDP supergather after (a) NMO correction and result after (b) wave-
let balancing.
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Figure 2. (a) Wavelets and (b) reflectivity. Wave-
lets can be convolved with the balanced result in
Figure 1b to reconstruct the original data in Fig-
ure 1a.

Figure 3. (a) The modeled data are a convolution
of the wavelets and reflectivities in Figure 2.
(b) The residual noise is the original data in Fig-
ure 1a minus the modeled data (a).
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a reflectivity that contained impulsive spikes in every 101 samples
(400 ms), then convolved with the dynamic wavelets. Changes over
time are gradual because the interval among independent wavelets
is 1.2 s.
Notice that wavelets show much more clearly the changes in co-

herence with offset and with time. RMOs are better determined be-
cause they must fit many adjacent reflections, no matter how weak.
The static jumps in the central traces are very visible. Some steep
coherent noise makes an imprint on inner offsets, but overall the
effect is small. Wavelets were normalized to preserve the total
squared amplitudes, but were not otherwise constrained.
Crosscorrelations or semblances should be able to detect the

RMOs in these wavelets more easily than from the weak reflections
in the original data. These wavelets average the residual coherence
of multiple weak reflections and make it less necessary to choose
isolated strong reflections. We can increase the signal-to-noise by

increasing the interval among independent wavelets, or we can in-
crease resolution by decreasing the interval.
Figure 2b is the estimated reflectivity, which is the same for all

traces, but with the original mute applied. This reflectivity can be
substituted for a conventional stack.
In Figure 3a, we see the modeled data according to equation 4.

This is a convolution of the wavelets and the reflectivities in Fig-
ure 2. Here, we can see how much of the variable coherence of these
reflections can be explained with this simple convolutional model.
In Figure 3b, we see the unmodeled noise, the difference between

the modeled data in Figure 3a and the original data in Figure 1a.
Notice that the noise contains some dipping reflections, probably
interbed multiples, that were too steep and variable to be modeled
successfully by the wavelets, which is just as well. There are other
flatter residual events near 2000 and 3700 ms. Some reflections may
be neither constant in reflectivity nor modulate with offset in the

Figure 4. A section of stacked seismic data with structure to be
processed like RMOs.

Figure 5. The same section after wavelet balancing, assuming flat
reflectivity.

V222 Harlan

 



same way as nearby reflections. If so, we prefer that wavelets re-
main unable to model such AVO changes, which would be removed
after deconvolution. We do not see any residual noise that appears
entirely constant from near to far offset. Neither do we see any noise
that appears consistently strong or weak at a single offset over a
range of times (although this is harder to recognize).
Returning to the deconvolved data, Figure 1b, we see that lower

frequencies in the steeply dipping dispersive noise become somewhat
more coherent after deconvolution. Higher frequencies remained be-
hind as steep noise in Figure 3b. Wavelets could not flatten much
dipping noise without increasing misfits in flat reflections at the same
frequencies.
As an additional stress test, we apply wavelet balancing to a

segment of stacked seismic data in Figure 4. If we assume reflec-
tivity should be flat, we can correct for structural changes as if

they were RMOs. The result appears in Figure 5. This workflow
could be used for automatically tracking and picking horizons,
but our main purpose is to test the robustness and convergence
of the algorithm.
In Figure 6, we show the estimated wavelets, which can be con-

volved with Figure 5 to reconstruct the original data in Figure 4.
This time, we used only normalized wavelets, without any cosine
taper applied, to see the full range of lags. The estimated reflectivity
shown in Figure 7 can be convolved with these wavelets for the
modeled data in Figure 8. The noise in Figure 9 is the difference
between the original and the modeled data.
Although this structure appears very arbitrary, it is still highly

conformal and shows no visible faulting or other structural discon-
tinuities. There are a few discontinuities that could be interpreted
as residual static errors, particularly around inline number 300.

Figure 6. Estimated wavelets for the stacked data. No cosine taper
has been applied. Figure 7. Estimated flat reflectivity.
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Optimization is able to converge on a combination of wavelets
and reflectivities that reproduce all these details very well. The
deconvolution adjusts the structure by more than a wavelength,
without any visible errors from cycle skipping. The strong reflector
at 540 ms in Figure 5 appears much more continuous after wavelet
balancing. After 1100 ms, we see little overall improvement in the
lateral continuity of very incoherent reflections, including steeply
dipping noise. This result shows a reluctance of the deconvolution
to create coherent signal from completely random alignments of
noise. The wavelets in Figure 6 show the structural coherence more
clearly than the original noisy data. Even in the later noisier wave-
lets, we see clear structural trends, with shifts spanning the full
width of the wavelets. The consistent coherence of wavelets is mod-
eling reflections in Figure 8 that are weaker than the incoherent
noise in Figure 9.

CONCLUSIONS AND FUTURE DIRECTIONS

Estimated dynamic wavelets can capture the coherence of
conventional RMO analysis, with additional frequency-dependent
changes in phase shifts and amplitudes. Linearized optimization
avoids the nonuniqueness and local minima of trace stretching.
For optimization, the most crucial parameters are the lengths of

wavelets and the interval in time or depth among independent wave-
lets. In each case, we can adjust a trade-off between resolution and
reliability, depending on the quality of our data. Longer wavelets
allow for larger shifts in RMO. A shorter interval among wavelets
allows moveouts to adapt more rapidly over time and depth. On the
other hand, longer wavelets and shorter intervals increase the num-
ber of unknowns and reduce redundancy.
The most straightforward use of estimated wavelets is deconvo-

lution of the original data. Deconvolution enhances the lateral con-
tinuity of traces, without any explicit mixing of amplitudes among
traces.

Figure 8. Reconstructed data that convolves reflectivity with wave-
lets.

Figure 9. Noise after subtracting the reconstructed data from the
original data.
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Estimated wavelets could also take the place of the original data
for semblance scans and crosscorrelations. These wavelets capture
all residual coherence over a time interval shared by weak reflec-
tions that are individually difficult to pick.
We optimized reflectivities to fit as much coherence as possible

before wavelets began to adjust residual coherence. A multiscale
method could further adjust degrees of freedom in wavelets with each
iteration, either reducing the interval among wavelets or increasing
their lengths.
In examples, we normalized wavelets to preserve mean-squared

amplitudes and to avoid nonuniqueness in scaling. These wavelets
could also be whitened with zero-phase deconvolution to avoid redis-
tributing amplitudes among frequencies. Phase shifts could be con-
strained to a narrower class of specific rotations.
The reflectivity model should include a smooth gradient with off-

set, reducing the need for wavelet normalization. Smooth variations
in reflectivity could also account for vector offsets and Fresnel
zones over 3D spatial midpoint directions.
Overall, we see much potential in replacing the stretch of conven-

tional RMO with a model that explicitly distinguishes reflectivity
from convolutional wavelets.
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