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Introdu
tion

\Kir
hho� migration of seismi
 data 
ompressed by mat
hing pursuit de
om-

position," by Bin Wang and Keh Pann [2℄, shows how to perform Kir
hho�

summation migration dire
tly in the wavelet domain. I am happy �nally to

see this simple idea in print. The same idea 
ame to me years ago with a

previous employer. Now all details are publi
 knowledge, and I 
an talk about

it again. This paper also suggests many useful ideas that 
ame from pra
ti-


al implementation. (For example, inverse wavelets 
an in
lude ne
essary rho

�lters.)

First I will provide my own favorite de�nition of a 
ontinuous wavelet

transform, whi
h I wrote down in 1986 to rederive the results in Goupillaud

et al [1℄. (At the time in Zhuo Xian, China, I had an oÆ
e down the hall from

Pierre Goupillaud.) This 
ontinuous transform seems mu
h better suited to

geophysi
al appli
ations than the now more popular dis
rete wavelet transform

using Daube
hies wavelets. The latter have a broader spe
trum than ne
essary,

more suitable for 
ompressing photographi
 images with sharp edges. The


ontinuous transform 
an use simple Gaussian tapered mono
hromati
 waves

(one or multi-dimensional) whi
h maximizes the lo
ality in both time/spa
e

and frequen
y/wavenumber.

This new paper points out that the innermost loop of a Kir
hho� migration


an be des
ribed as a simple shift and sum, whi
h is a trivial operation in

the wavelet domain. (Although trivial, the analyti
 details are given below,

sin
e I already have them worked out.) More pre
isely, input seismi
 tra
es

are stret
hed, resampled, s
aled, and then �nally summed. If I perform an

equivalent operation dire
tly on a wavelet-transformed tra
e, then the 
ost


ould also be redu
ed manyfold.

First, I will give the de�nition of what 
onstitutes a valid \wavelet" for

the transform. Se
ond, the inverse of a wavelet transform will be derived to

demonstrate why the transform works. Last, I will show how the wavelet-
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transform of a stret
hed tra
e 
an be written as a simple fun
tion of the

wavelet-transform of the original unstret
hed tra
e.

Legal wavelets

I will 
losely imitate the 
ontinuous transform originally provided by Goupil-

laud, Grossman, and Morlet [1℄. They provide forward and inverse transforms

for related transforms, but without derivation.

Use the following Fourier 
onvention to link a wavelet w(t) and its Fourier

transform ~w(s):

~w(s) =

Z

e

�i2�st

w(t)dt and (1)

w(t) =

Z

e

i2�st

~w(s)ds: (2)

(All integrals with unlabeled extremes are assumed to be over the entire real

line.)

The following integral must exist for a valid wavelet.

C

w

=

Z

1

jsj

~w(s)ds: (3)

Thus, the spe
trum of a valid wavelet must approa
h a zero value at zero

frequen
y: ~w(s)=jsj

�

! 0 as s ! 0 for some � > 0.

This wavelet need not 
orrespond to a seismi
 waveform. Rather, when


onvolved with a tra
e, the wavelet should suppress all but a band of frequen-


ies. Be
ause of the un
ertainty prin
iple, I must balan
e the narrowness of

the bandwidth with the narrowness in time.

I re
ommend a Gaussian-tapered sinusoid, su
h as w(t) = 
os(2�t)(e

��t

2

=


2

).

Su
h a wavelet is reasonably 
ompa
t in both the time and frequen
y domain.

(The 
onstant 
 adjusts the relative 
ompa
tness, within the limits of the

un
ertainty prin
iple.)

A valid wavelet 
an be used in an unfamiliar 
onstru
tion of a delta fun
-

tion.

Z

w(ut)du = C

w

� Æ(t): (4)

In e�e
t, this integral says that many wavelets, stret
hed uniformly over all

s
ales, will sum destru
tively everywhere but at t = 0.

Proof :

Z

w(ut)du =

Z

(

Z

1

juj

~w(

s

u

)e

i2�st

ds

)

du : : : (5)

Change variables from (s; u) to (s

0

= s; u

0

= s=u). The Ja
obian is

�(s; u)=�(s

0

; u

0

) = js

0

=u

02

j. Thus,

Z

w(ut)du =

Z Z

�

�

�

�

�

u

0

s

0

�

�

�

�

�

~w(u

0

)e

i2�s

0

t

�

�

�

�

�

s

0

u

02

�

�

�

�

�

ds

0

du

0

(6)
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=

Z Z

1

ju

0

j

~w(u

0

)e

i2�s

0

t

ds

0

du

0

(7)

=

(

Z

1

ju

0

j

~w(u

0

)du

0

)

�

�

Z

e

i2�s

0

t

ds

0

�

(8)

= C

w

� Æ(t): (9)

Here, I use the familiar Fourier de�nition of a delta fun
tion, with the same

restri
tions.

The 
onstraint of symmetry will also simplify the de�nition of a wavelet

transform in the following se
tion, but this assumption is optional:

w(t) = w(�t): (10)

Forward and inverse transforms

De�ne a wavelet transform F (u; a) of an L

2

fun
tion f(t) by the following

F (u; a) =

Z

w[u(a� t)℄f(t)dt: (11)

This transform de
omposes the fun
tion as a fun
tion of position a and lo
al

frequen
y u. When 
al
ulated dis
retely, the sampling need not be uniform

over a and u, but the weights should re
e
t the above integration.

Goupillaud et all [1℄ prefer 2

u

or u

�1

instead of u as the stret
h fa
tor.

If you prefer an asymmetri
 wavelet, then you must use two transforms|the

above, and the integral with the time-reversed wavelet.)

I �nd the following inverse, whi
h simply s
ales and sums the transform

with uniform weight over lo
al frequen
y u:

f(t) = C

�1

w

Z

F (u; a = t)du: (12)

Proof : C

�1

w

Z

F (u; a = t)du = C

�1

w

Z

�

Z

w[u(t� t

0

)℄f(t

0

)dt

0

�

du (13)

= C

�1

w

Z

�

Z

w[u(t� t

0

)℄du

�

f(t

0

)dt

0

(14)

= C

�1

w

Z

C

w

Æ(t� t

0

)f(t

0

)dt

0

(15)

= f(t): (16)

Here I make use of equation 4.
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Summation imaging

The previous se
tions were impli
it in Goupillaud et al [1℄, although I person-

ally found it nontrivial to �ll in the missing derivation of the results. I was

also happy to stumble on equation 4, whi
h 
ontinues to fas
inate me.

This last se
tion 
ontains the only new idea parti
ular to Kir
hho� mi-

gration, and this idea is now publi
. The idea is so obvious, really, that I'm

sure everyone who has 
onsidered applying Kir
hho� migration to wavelets has

thought of it. I write down the details just as a way of making the notation


onform to that of the pre
eding 
ontinuous wavelet transform.

The inner loop of a summation imaging pro
edure (Kir
hho� migration)


an be written as a simple stret
hing fun
tion:

g(�) = f [t(�)℄: (17)

The stret
hing fun
tion t(�) gives the input data time t as a monotoni
ally

in
reasing fun
tion of the output image depth � . Moreover, I will assume that

the stret
hing fun
tion 
an be well approximated lo
ally by a straight line.

t(�) � t(�

0

) + (� � �

0

) �

dt

d�

(�

0

) and (18)

�(t) � �

0

+ [t� t(�

0

)℄ �

"

dt

d�

(�

0

)

#

�1

: (19)

De�ne forward and inverse wavelet transforms of g(�) with the same wavelets

as in de�nition 11 and inverse 12.

G(v; b) =

Z

w[v(b� �)℄g(�)d� and (20)

g(�) = C

�1

w

Z

G(v; b = �)dv: (21)

We would like to be able to express the transform G(v; b) as a simple fun
tion

of F (u; a). The approximation 18 allows us to write

G(v; b) �

�

�

�

�

�

dt

d�

(b)

�

�

�

�

�

�1

F

8

<

:

u = v �

"

dt

d�

(b)

#

�1

; a = t(b)

9

=

;

: (22)

We 
an perform an equivalent stret
h on the transformed input by stret
hing

the position a, and by s
aling the lo
al frequen
y u. Both operations require a

simple two-dimensional mapping of the transformed fun
tion. The amplitude

must be s
aled as well.

Proof : G(v; b) =

Z

w[v(b� �)℄ � f [t(�)℄d� (23)

�

Z

w[v(b� �)℄ � f

"

t(b) + (� � b) �

dt

d�

(b)

#

d� : : : (24)



Wavelet Kir
hho� migration | W.S. Harlan 5

Substitute the variable of integration:

t

0

� t(b) + (� � b) �

dt

d�

(b) and (25)

� = b + [t

0

� t(b)℄ �

"

dt

d�

(b)

#

�1

: (26)

Thus,

G(v; b) =

Z

w

8

<

:

v � [t(b)� t

0

℄ �

"

dt

d�

(b)

#

�1

9

=

;

� f(t

0

) �

�

�

�

�

�

dt

d�

(b)

�

�

�

�

�

�1

dt

0

(27)

=

�

�

�

�

�

dt

d�

(b)

�

�

�

�

�

�1

Z

w

8

<

:

v

"

dt

d�

(b)

#

�1

� [t(b)� t

0

℄

9

=

;

� f(t

0

)dt

0

(28)

=

�

�

�

�

�

dt

d�

(b)

�

�

�

�

�

�1

F

8

<

:

u = v �

"

dt

d�

(b)

#

�1

; a = t(b)

9

=

;

: (29)

The symmetry of w(t) was not ne
essary here.

Equation 22 is the result whi
h allows us to perform the stret
h dire
tly

on the wavelet-transformed tra
e.
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