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Introdution

\Kirhho� migration of seismi data ompressed by mathing pursuit deom-

position," by Bin Wang and Keh Pann [2℄, shows how to perform Kirhho�

summation migration diretly in the wavelet domain. I am happy �nally to

see this simple idea in print. The same idea ame to me years ago with a

previous employer. Now all details are publi knowledge, and I an talk about

it again. This paper also suggests many useful ideas that ame from prati-

al implementation. (For example, inverse wavelets an inlude neessary rho

�lters.)

First I will provide my own favorite de�nition of a ontinuous wavelet

transform, whih I wrote down in 1986 to rederive the results in Goupillaud

et al [1℄. (At the time in Zhuo Xian, China, I had an oÆe down the hall from

Pierre Goupillaud.) This ontinuous transform seems muh better suited to

geophysial appliations than the now more popular disrete wavelet transform

using Daubehies wavelets. The latter have a broader spetrum than neessary,

more suitable for ompressing photographi images with sharp edges. The

ontinuous transform an use simple Gaussian tapered monohromati waves

(one or multi-dimensional) whih maximizes the loality in both time/spae

and frequeny/wavenumber.

This new paper points out that the innermost loop of a Kirhho� migration

an be desribed as a simple shift and sum, whih is a trivial operation in

the wavelet domain. (Although trivial, the analyti details are given below,

sine I already have them worked out.) More preisely, input seismi traes

are strethed, resampled, saled, and then �nally summed. If I perform an

equivalent operation diretly on a wavelet-transformed trae, then the ost

ould also be redued manyfold.

First, I will give the de�nition of what onstitutes a valid \wavelet" for

the transform. Seond, the inverse of a wavelet transform will be derived to

demonstrate why the transform works. Last, I will show how the wavelet-
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transform of a strethed trae an be written as a simple funtion of the

wavelet-transform of the original unstrethed trae.

Legal wavelets

I will losely imitate the ontinuous transform originally provided by Goupil-

laud, Grossman, and Morlet [1℄. They provide forward and inverse transforms

for related transforms, but without derivation.

Use the following Fourier onvention to link a wavelet w(t) and its Fourier

transform ~w(s):

~w(s) =

Z

e

�i2�st

w(t)dt and (1)

w(t) =

Z

e

i2�st

~w(s)ds: (2)

(All integrals with unlabeled extremes are assumed to be over the entire real

line.)

The following integral must exist for a valid wavelet.

C

w

=

Z

1

jsj

~w(s)ds: (3)

Thus, the spetrum of a valid wavelet must approah a zero value at zero

frequeny: ~w(s)=jsj

�

! 0 as s ! 0 for some � > 0.

This wavelet need not orrespond to a seismi waveform. Rather, when

onvolved with a trae, the wavelet should suppress all but a band of frequen-

ies. Beause of the unertainty priniple, I must balane the narrowness of

the bandwidth with the narrowness in time.

I reommend a Gaussian-tapered sinusoid, suh as w(t) = os(2�t)(e

��t

2

=

2

).

Suh a wavelet is reasonably ompat in both the time and frequeny domain.

(The onstant  adjusts the relative ompatness, within the limits of the

unertainty priniple.)

A valid wavelet an be used in an unfamiliar onstrution of a delta fun-

tion.

Z

w(ut)du = C

w

� Æ(t): (4)

In e�et, this integral says that many wavelets, strethed uniformly over all

sales, will sum destrutively everywhere but at t = 0.

Proof :

Z

w(ut)du =

Z

(

Z

1

juj

~w(

s

u

)e

i2�st

ds

)

du : : : (5)

Change variables from (s; u) to (s

0

= s; u

0

= s=u). The Jaobian is

�(s; u)=�(s

0

; u

0

) = js

0

=u

02

j. Thus,

Z

w(ut)du =

Z Z

�

�

�

�

�

u

0

s

0

�

�

�

�

�

~w(u

0

)e

i2�s

0

t

�

�

�

�

�

s

0

u

02

�

�

�

�

�

ds

0

du

0

(6)
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=

Z Z

1

ju

0

j

~w(u

0

)e

i2�s

0

t

ds

0

du

0

(7)

=

(

Z

1

ju

0

j

~w(u

0

)du

0

)

�

�

Z

e

i2�s

0

t

ds

0

�

(8)

= C

w

� Æ(t): (9)

Here, I use the familiar Fourier de�nition of a delta funtion, with the same

restritions.

The onstraint of symmetry will also simplify the de�nition of a wavelet

transform in the following setion, but this assumption is optional:

w(t) = w(�t): (10)

Forward and inverse transforms

De�ne a wavelet transform F (u; a) of an L

2

funtion f(t) by the following

F (u; a) =

Z

w[u(a� t)℄f(t)dt: (11)

This transform deomposes the funtion as a funtion of position a and loal

frequeny u. When alulated disretely, the sampling need not be uniform

over a and u, but the weights should reet the above integration.

Goupillaud et all [1℄ prefer 2

u

or u

�1

instead of u as the streth fator.

If you prefer an asymmetri wavelet, then you must use two transforms|the

above, and the integral with the time-reversed wavelet.)

I �nd the following inverse, whih simply sales and sums the transform

with uniform weight over loal frequeny u:

f(t) = C

�1

w

Z

F (u; a = t)du: (12)

Proof : C

�1

w

Z

F (u; a = t)du = C

�1

w

Z

�

Z

w[u(t� t

0

)℄f(t

0

)dt

0

�

du (13)

= C

�1

w

Z

�

Z

w[u(t� t

0

)℄du

�

f(t

0

)dt

0

(14)

= C

�1

w

Z

C

w

Æ(t� t

0

)f(t

0

)dt

0

(15)

= f(t): (16)

Here I make use of equation 4.
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Summation imaging

The previous setions were impliit in Goupillaud et al [1℄, although I person-

ally found it nontrivial to �ll in the missing derivation of the results. I was

also happy to stumble on equation 4, whih ontinues to fasinate me.

This last setion ontains the only new idea partiular to Kirhho� mi-

gration, and this idea is now publi. The idea is so obvious, really, that I'm

sure everyone who has onsidered applying Kirhho� migration to wavelets has

thought of it. I write down the details just as a way of making the notation

onform to that of the preeding ontinuous wavelet transform.

The inner loop of a summation imaging proedure (Kirhho� migration)

an be written as a simple strething funtion:

g(�) = f [t(�)℄: (17)

The strething funtion t(�) gives the input data time t as a monotonially

inreasing funtion of the output image depth � . Moreover, I will assume that

the strething funtion an be well approximated loally by a straight line.

t(�) � t(�

0

) + (� � �

0

) �

dt

d�

(�

0

) and (18)

�(t) � �

0

+ [t� t(�

0

)℄ �

"

dt

d�

(�

0

)

#

�1

: (19)

De�ne forward and inverse wavelet transforms of g(�) with the same wavelets

as in de�nition 11 and inverse 12.

G(v; b) =

Z

w[v(b� �)℄g(�)d� and (20)

g(�) = C

�1

w

Z

G(v; b = �)dv: (21)

We would like to be able to express the transform G(v; b) as a simple funtion

of F (u; a). The approximation 18 allows us to write

G(v; b) �

�

�

�

�

�

dt

d�

(b)

�

�

�

�

�

�1

F

8

<

:

u = v �

"

dt

d�

(b)

#

�1

; a = t(b)

9

=

;

: (22)

We an perform an equivalent streth on the transformed input by strething

the position a, and by saling the loal frequeny u. Both operations require a

simple two-dimensional mapping of the transformed funtion. The amplitude

must be saled as well.

Proof : G(v; b) =

Z

w[v(b� �)℄ � f [t(�)℄d� (23)

�

Z

w[v(b� �)℄ � f

"

t(b) + (� � b) �

dt

d�

(b)

#

d� : : : (24)
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Substitute the variable of integration:

t

0

� t(b) + (� � b) �

dt

d�

(b) and (25)

� = b + [t

0

� t(b)℄ �

"

dt

d�

(b)

#

�1

: (26)

Thus,

G(v; b) =

Z

w

8

<

:

v � [t(b)� t

0

℄ �

"

dt

d�

(b)

#

�1

9

=

;

� f(t

0

) �

�

�

�

�

�

dt

d�

(b)

�

�

�

�

�

�1

dt

0

(27)

=

�

�

�

�

�

dt

d�

(b)

�

�

�

�

�

�1

Z

w

8

<

:

v

"

dt

d�

(b)

#

�1

� [t(b)� t

0

℄

9

=

;

� f(t

0

)dt

0

(28)

=

�

�

�

�

�

dt

d�

(b)

�

�

�

�

�

�1

F

8

<

:

u = v �

"

dt

d�

(b)

#

�1

; a = t(b)

9

=

;

: (29)

The symmetry of w(t) was not neessary here.

Equation 22 is the result whih allows us to perform the streth diretly

on the wavelet-transformed trae.
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